Yunpeng Tian (Huazhong University of Science and Technology), Feng Dong (Huazhong University of Science and Technology), Haoyi Liu (Huazhong University of Science and Technology), Meng Xu (University of Waterloo), Zhiniang Peng (Huazhong University of Science and Technology; Sangfor Technologies Inc.), Zesen Ye (Sangfor Technologies Inc.), Shenghui Li (Huazhong University of Science and Technology), Xiapu Luo (The Hong Kong Polytechnic University), Haoyu Wang (Huazhong University of Science and Technology)

Microsoft Office is a comprehensive suite of productivity tools and Object Linking & Embedding (OLE) is a specification that standardizes the linking and embedding of a diverse set of objects across different applications.OLE facilitates data interchange and streamlines user experience when dealing with composite documents (e.g., an embedded Excel sheet in a Word document). However, inherent security weaknesses within the design of OLE present risks, as the design of OLE inherently blurs the trust boundary between first-party and third-party code, which may lead to unintended library loading and parsing vulnerabilities which could be exploited by malicious actors. Addressing this issue, this paper introduces OLExplore, a novel tool designed for security assessment of Office OLE objects.With an in-depth examination of historical OLE vulnerabilities, we have identified three key categories of vulnerabilities and subjected them to dynamic analysis and verification. Our evaluation of various Windows operating system versions has led to the discovery of 26 confirmed vulnerabilities, with 17 assigned CVE numbers that all have remote code execution potential.

View More Papers

Enhancing Security in Third-Party Library Reuse – Comprehensive Detection...

Shangzhi Xu (The University of New South Wales), Jialiang Dong (The University of New South Wales), Weiting Cai (Delft University of Technology), Juanru Li (Feiyu Tech), Arash Shaghaghi (The University of New South Wales), Nan Sun (The University of New South Wales), Siqi Ma (The University of New South Wales)

Read More

Vision: Comparison of AI-assisted Policy Development Between Professionals and...

Rishika Thorat (Purdue University), Tatiana Ringenberg (Purdue University)

Read More

Try to Poison My Deep Learning Data? Nowhere to...

Yansong Gao (The University of Western Australia), Huaibing Peng (Nanjing University of Science and Technology), Hua Ma (CSIRO's Data61), Zhi Zhang (The University of Western Australia), Shuo Wang (Shanghai Jiao Tong University), Rayne Holland (CSIRO's Data61), Anmin Fu (Nanjing University of Science and Technology), Minhui Xue (CSIRO's Data61), Derek Abbott (The University of Adelaide, Australia)

Read More

On the Robustness of LDP Protocols for Numerical Attributes...

Xiaoguang Li (Xidian University, Purdue University), Zitao Li (Alibaba Group (U.S.) Inc.), Ninghui Li (Purdue University), Wenhai Sun (Purdue University, West Lafayette, USA)

Read More