Yunpeng Tian (Huazhong University of Science and Technology), Feng Dong (Huazhong University of Science and Technology), Haoyi Liu (Huazhong University of Science and Technology), Meng Xu (University of Waterloo), Zhiniang Peng (Huazhong University of Science and Technology; Sangfor Technologies Inc.), Zesen Ye (Sangfor Technologies Inc.), Shenghui Li (Huazhong University of Science and Technology), Xiapu Luo (The Hong Kong Polytechnic University), Haoyu Wang (Huazhong University of Science and Technology)

Microsoft Office is a comprehensive suite of productivity tools and Object Linking & Embedding (OLE) is a specification that standardizes the linking and embedding of a diverse set of objects across different applications.OLE facilitates data interchange and streamlines user experience when dealing with composite documents (e.g., an embedded Excel sheet in a Word document). However, inherent security weaknesses within the design of OLE present risks, as the design of OLE inherently blurs the trust boundary between first-party and third-party code, which may lead to unintended library loading and parsing vulnerabilities which could be exploited by malicious actors. Addressing this issue, this paper introduces OLExplore, a novel tool designed for security assessment of Office OLE objects.With an in-depth examination of historical OLE vulnerabilities, we have identified three key categories of vulnerabilities and subjected them to dynamic analysis and verification. Our evaluation of various Windows operating system versions has led to the discovery of 26 confirmed vulnerabilities, with 17 assigned CVE numbers that all have remote code execution potential.

View More Papers

SCAMMAGNIFIER: Piercing the Veil of Fraudulent Shopping Website Campaigns

Marzieh Bitaab (Arizona State University), Alireza Karimi (Arizona State University), Zhuoer Lyu (Arizona State University), Adam Oest (Amazon), Dhruv Kuchhal (Amazon), Muhammad Saad (X Corp.), Gail-Joon Ahn (Arizona State University), Ruoyu Wang (Arizona State University), Tiffany Bao (Arizona State University), Yan Shoshitaishvili (Arizona State University), Adam Doupé (Arizona State University)

Read More

BumbleBee: Secure Two-party Inference Framework for Large Transformers

Wen-jie Lu (Ant Group), Zhicong Huang (Ant Group), Zhen Gu (Alibaba Group), Jingyu Li (Ant Group & Zhejiang University), Jian Liu (Zhejiang University), Cheng Hong (Ant Group), Kui Ren (Zhejiang University), Tao Wei (Ant Group), WenGuang Chen (Ant Group)

Read More

Provably Unlearnable Data Examples

Derui Wang (CSIRO's Data61), Minhui Xue (CSIRO's Data61), Bo Li (The University of Chicago), Seyit Camtepe (CSIRO's Data61), Liming Zhu (CSIRO's Data61)

Read More

Careful About What App Promotion Ads Recommend! Detecting and...

Shang Ma (University of Notre Dame), Chaoran Chen (University of Notre Dame), Shao Yang (Case Western Reserve University), Shifu Hou (University of Notre Dame), Toby Jia-Jun Li (University of Notre Dame), Xusheng Xiao (Arizona State University), Tao Xie (Peking University), Yanfang Ye (University of Notre Dame)

Read More