Xuanji Meng (Tsinghua University), Xiao Sui (Shandong University), Zhaoxin Yang (Tsinghua University), Kang Rong (Blockchain Platform Division,Ant Group), Wenbo Xu (Blockchain Platform Division,Ant Group), Shenglong Chen (Blockchain Platform Division,Ant Group), Ying Yan (Blockchain Platform Division,Ant Group), Sisi Duan (Tsinghua University)

We present Rondo, a scalable and reconfiguration-friendly distributed randomness beacon (DRB) protocol in the partially synchronous model. Rondo is the first DRB protocol that is built from batched asynchronous verifiable secret sharing (bAVSS) and meanwhile avoids the high $O(n^3)$ message cost, where $n$ is the number of nodes. Our key contribution lies in the introduction of a new variant of bAVSS called batched asynchronous verifiable secret sharing with partial output (bAVSS-PO). bAVSS-PO is a weaker primitive than bAVSS but allows us to build a secure and more scalable DRB protocol. We propose a bAVSS-PO protocol Breeze. Breeze achieves the optimal $O(n)$ messages for the sharing stage and allows Rondo to offer better scalability than prior DRB protocols.
Additionally, to support the reconfiguration, we introduce Rondo-BFT, a dynamic and partially synchronous Byzantine fault-tolerant protocol inspired by Dyno (S&P 2022). Unlike Dyno, Rondo-BFT provides a communication pattern that generates randomness beacon output periodically, making it well-suited for DRB applications.

We implement our protocols and evaluate the performance on Amazon EC2 using up to 91 instances. Our evaluation results show that Rondo achieves higher throughput than existing works and meanwhile offers better scalability, where the performance does not degrade as significantly as $n$ grows.

View More Papers

Hidden and Lost Control: on Security Design Risks in...

Haoqiang Wang, Yiwei Fang (Institute of Information Engineering, Chinese Academy of Sciences; School of Cyber Security, University of Chinese Academy of Sciences; Indiana University Bloomington), Yichen Liu (Indiana University Bloomington), Ze Jin (Institute of Information Engineering, Chinese Academy of Sciences; School of Cyber Security, University of Chinese Academy of Sciences; Indiana University Bloomington), Emma Delph…

Read More

Provably Unlearnable Data Examples

Derui Wang (CSIRO's Data61), Minhui Xue (CSIRO's Data61), Bo Li (The University of Chicago), Seyit Camtepe (CSIRO's Data61), Liming Zhu (CSIRO's Data61)

Read More

LLM-xApp: A Large Language Model Empowered Radio Resource Management...

Xingqi Wu (University of Michigan-Dearborn), Junaid Farooq (University of Michigan-Dearborn), Yuhui Wang (University of Michigan-Dearborn), Juntao Chen (Fordham University)

Read More