Tianchang Yang (Pennsylvania State University), Sathiyajith K S (Pennsylvania State University), Ashwin Senthil Arumugam (Pennsylvania State University), Syed Rafiul Hussain (Pennsylvania State University)

We present our work-in-progress on designing and implementing a black-box evolutionary fuzzer for REST APIs, specifically targeting 5G core networks that utilize a service-based architecture (SBA). Unlike existing tools that rely on static generation-based approaches, our approach progressively refines test inputs to explore deeper code regions in the target system. We incorporate a thorough analysis of the limited response message feedback available in black-box settings and employ a carefully crafted mutation method to generate effective state-aware test inputs. Evaluation of our current implementation has uncovered two previously unknown vulnerabilities in open-source 5G core network implementations, resulting in the assignment of two CVEs. Additionally, our approach already demonstrates superior performance compared to existing black-box fuzzing methods.

View More Papers

Evaluating Machine Learning-Based IoT Device Identification Models for Security...

Eman Maali (Imperial College London), Omar Alrawi (Georgia Institute of Technology), Julie McCann (Imperial College London)

Read More

Lend Me Your Beam: Privacy Implications of Plaintext Beamforming...

Rui Xiao (Zhejiang University), Xiankai Chen (Zhejiang University), Yinghui He (Nanyang Technological University), Jun Han (KAIST), Jinsong Han (Zhejiang University)

Read More

ScopeVerif: Analyzing the Security of Android’s Scoped Storage via...

Zeyu Lei (Purdue University), Güliz Seray Tuncay (Google), Beatrice Carissa Williem (Purdue University), Z. Berkay Celik (Purdue University), Antonio Bianchi (Purdue University)

Read More