Tianchang Yang (Pennsylvania State University), Sathiyajith K S (Pennsylvania State University), Ashwin Senthil Arumugam (Pennsylvania State University), Syed Rafiul Hussain (Pennsylvania State University)

We present our work-in-progress on designing and implementing a black-box evolutionary fuzzer for REST APIs, specifically targeting 5G core networks that utilize a service-based architecture (SBA). Unlike existing tools that rely on static generation-based approaches, our approach progressively refines test inputs to explore deeper code regions in the target system. We incorporate a thorough analysis of the limited response message feedback available in black-box settings and employ a carefully crafted mutation method to generate effective state-aware test inputs. Evaluation of our current implementation has uncovered two previously unknown vulnerabilities in open-source 5G core network implementations, resulting in the assignment of two CVEs. Additionally, our approach already demonstrates superior performance compared to existing black-box fuzzing methods.

View More Papers

The Forking Way: When TEEs Meet Consensus

Annika Wilde (Ruhr University Bochum), Tim Niklas Gruel (Ruhr University Bochum), Claudio Soriente (NEC Laboratories Europe), Ghassan Karame (Ruhr University Bochum)

Read More

Vision: The Price Should Be Right: Exploring User Perspectives...

Jacob Hopkins (Texas A&M University - Corpus Christi), Carlos Rubio-Medrano (Texas A&M University - Corpus Christi), Cori Faklaris (University of North Carolina at Charlotte)

Read More

GAP-Diff: Protecting JPEG-Compressed Images from Diffusion-based Facial Customization

Haotian Zhu (Nanjing University of Science and Technology), Shuchao Pang (Nanjing University of Science and Technology), Zhigang Lu (Western Sydney University), Yongbin Zhou (Nanjing University of Science and Technology), Minhui Xue (CSIRO's Data61)

Read More