Tomer Schwartz (Data and Security Laboratory Fujitsu Research of Europe Ltd), Ofir Manor (Data and Security Laboratory Fujitsu Research of Europe Ltd), Andikan Otung (Data and Security Laboratory Fujitsu Research of Europe Ltd)

Cyber attacks and fraud pose significant risks to online platforms, with malicious actors who often employ VPN servers to conceal their identities and bypass geolocation-based security measures. Current passive VPN detection methods identify VPN connections with more than 95% accuracy, but depend on prior knowledge, such as known VPN to IP mappings and predefined communication patterns. This makes them ineffective against sophisticated attackers who leverage compromised machines as VPN servers. On the other hand, current active detection methods are effective in detecting proxy usage but are mostly ineffective in VPN detection.

This paper introduces SNITCH (Server-side Non-intrusive Identification of Tunneled CHaracteristics), a novel approach designed to enhance web security by identifying VPN use without prior data collection on known VPN servers or utilizing intrusive client-side software. SNITCH combines IP geolocation, ground-truth landmarks, and communication delay measurements to detect VPN activity in real time and seamlessly integrates into the authentication process, preserving user experience while enhancing security. We measured 130 thousand connections from over 24 thousand globally distributed VPN servers and client nodes to validate the feasibility of our solution in the real world. Our experiments revealed that in scenarios where the State of the Art fails to detect, SNITCH achieves a detection accuracy of up to 93%, depending on the geographical region.

View More Papers

BULKHEAD: Secure, Scalable, and Efficient Kernel Compartmentalization with PKS

Yinggang Guo (State Key Laboratory for Novel Software Technology, Nanjing University; University of Minnesota), Zicheng Wang (State Key Laboratory for Novel Software Technology, Nanjing University), Weiheng Bai (University of Minnesota), Qingkai Zeng (State Key Laboratory for Novel Software Technology, Nanjing University), Kangjie Lu (University of Minnesota)

Read More

Characterizing the Impact of Audio Deepfakes in the Presence...

Magdalena Pasternak (University of Florida), Kevin Warren (University of Florida), Daniel Olszewski (University of Florida), Susan Nittrouer (University of Florida), Patrick Traynor (University of Florida), Kevin Butler (University of Florida)

Read More

Towards Anonymous Chatbots with (Un)Trustworthy Browser Proxies

Dzung Pham, Jade Sheffey, Chau Minh Pham, and Amir Houmansadr (University of Massachusetts Amherst)

Read More

A Multifaceted Study on the Use of TLS and...

Ka Fun Tang (The Chinese University of Hong Kong), Che Wei Tu (The Chinese University of Hong Kong), Sui Ling Angela Mak (The Chinese University of Hong Kong), Sze Yiu Chau (The Chinese University of Hong Kong)

Read More