Maxime Huyghe (Univ. Lille, Inria, CNRS, UMR 9189 CRIStAL), Clément Quinton (Univ. Lille, Inria, CNRS, UMR 9189 CRIStAL), Walter Rudametkin (Univ. Rennes, Inria, CNRS, UMR 6074 IRISA)

Web browsers have become complex tools used by billions of people. The complexity is in large part due to its adaptability and variability as a deployment platform for modern applications, with features continuously being added. This also has the side effect of exposing configuration and hardware properties that are exploited by browser fingerprinting techniques.

In this paper, we generate a large dataset of browser fingerprints using multiple browser versions, system and hardware configurations, and describe a tool that allows reasoning over the links between configuration parameters and browser fingerprints. We argue that using generated datasets that exhaustively explore configurations provides developers, and attackers, with important information related to the links between configuration parameters (i.e., browser, system and hardware configurations) and their exhibited browser fingerprints. We also exploit Browser Object Model (BOM) enumeration to obtain exhaustive browser fingerprints composed of up to 16, 000 attributes.

We propose to represent browser fingerprints and their configurations with feature models, a tree-based representation commonly used in Software Product Line Engineering (SPLE) to respond to the challenges of variability, to provide a better abstraction to represent browser fingerprints and configurations. With translate 89, 486 browser fingerprints into a feature model with 35, 857 nodes from 1, 748 configurations. We show the advantages of this approach, a more elegant tree-based solution, and propose an API to query the dataset. With these tools and our exhaustive configuration exploration, we provide multiple use cases, including differences between headless and headful browsers or the selection of a minimal set of attributes from browser fingerprints to re-identify a configuration parameter from the browser.

View More Papers

Logical Maneuvers: Detecting and Mitigating Adversarial Hardware Faults in...

Fatemeh Khojasteh Dana, Saleh Khalaj Monfared, Shahin Tajik (Worcester Polytechnic Institute)

Read More

RContainer: A Secure Container Architecture through Extending ARM CCA...

Qihang Zhou (Institute of Information Engineering, Chinese Academy of Sciences), Wenzhuo Cao (Institute of Information Engineering, Chinese Academy of Sciences; School of Cyberspace Security, University of Chinese Academy of Sciences), Xiaoqi Jia (Institute of Information Engineering, Chinese Academy of Sciences), Peng Liu (The Pennsylvania State University, USA), Shengzhi Zhang (Department of Computer Science, Metropolitan College,…

Read More

BumbleBee: Secure Two-party Inference Framework for Large Transformers

Wen-jie Lu (Ant Group), Zhicong Huang (Ant Group), Zhen Gu (Alibaba Group), Jingyu Li (Ant Group & Zhejiang University), Jian Liu (Zhejiang University), Cheng Hong (Ant Group), Kui Ren (Zhejiang University), Tao Wei (Ant Group), WenGuang Chen (Ant Group)

Read More

type++: Prohibiting Type Confusion with Inline Type Information

Nicolas Badoux (EPFL), Flavio Toffalini (Ruhr-Universität Bochum, EPFL), Yuseok Jeon (UNIST), Mathias Payer (EPFL)

Read More