Sirvan Almasi (Imperial College London), William J. Knottenbelt (Imperial College London)

Password composition policies (PCPs) are critical security rules that govern how users create passwords for online authentication. Despite passwords remaining the primary authentication method online, there is significant disagreement among experts, regulatory bodies, and researchers about what constitutes effective password policies. This lack of consensus has led to high variance in PCP implementations across websites, leaving both developers and users uncertain. Current approaches lack a theoretical foundation for evaluating and comparing different password composition policies. We show that a structure-based policy, such as the three-random words recommended by UK’s National Cyber Security Centre (NCSC), can improve password security. We demonstrate this using an empirical evaluation of labelled password datasets and a new theoretical framework. Using these methods we demonstrate the feasibility and security of multi-word password policy and extend the NCSC’s recommendation to five words to account for nonuniform word selection. These findings provide an evidence-based framework for password policy development and suggest that current web authentication systems should adjust their minimum word requirements upward while maintaining usability.

View More Papers

Automated Expansion of Privacy Data Taxonomy for Compliant Data...

Yue Qin (Indiana University Bloomington & Central University of Finance and Economics), Yue Xiao (Indiana University Bloomington & IBM Research), Xiaojing Liao (Indiana University Bloomington)

Read More

I know what you MEME! Understanding and Detecting Harmful...

Yong Zhuang (Wuhan University), Keyan Guo (University at Buffalo), Juan Wang (Wuhan University), Yiheng Jing (Wuhan University), Xiaoyang Xu (Wuhan University), Wenzhe Yi (Wuhan University), Mengda Yang (Wuhan University), Bo Zhao (Wuhan University), Hongxin Hu (University at Buffalo)

Read More

How Different Tokenization Algorithms Impact LLMs and Transformer Models...

Ahmed Mostafa, Raisul Arefin Nahid, Samuel Mulder (Auburn University)

Read More

LADDER: Multi-Objective Backdoor Attack via Evolutionary Algorithm

Dazhuang Liu (Delft University of Technology), Yanqi Qiao (Delft University of Technology), Rui Wang (Delft University of Technology), Kaitai Liang (Delft University of Technology), Georgios Smaragdakis (Delft University of Technology)

Read More