Kaiming Cheng (University of Washington), Mattea Sim (Indiana University), Tadayoshi Kohno (University of Washington), Franziska Roesner (University of Washington)

Augmented reality (AR) headsets are now commercially available, including major platforms like Microsoft’s Hololens 2, Meta’s Quest Pro, and Apple’s Vision Pro. Compared to currently widely deployed smartphone or web platforms, emerging AR headsets introduce new sensors that capture substantial and potentially privacy-invasive data about the users, including eye-tracking and hand-tracking sensors. As millions of users begin to explore AR for the very first time with the release of these headsets, it is crucial to understand the current technical landscape of these new sensing technologies and how end-users perceive and understand their associated privacy and utility implications. In this work, we investigate the current eye-tracking and hand-tracking permission models for three major platforms (HoloLens 2, Quest Pro, and Vision Pro): what is the granularity of eye-tracking and hand-tracking data made available to applications on these platforms, and what information is provided to users asked to grant these permissions (if at all)? We conducted a survey with 280 participants with no prior AR experience on Prolific to investigate (1) people’s comfort with the idea of granting eye- and hand-tracking permissions on these platforms, (2) their perceived and actual comprehension of the privacy and utility implications of granting these permissions, and (3) the self-reported factors that impact their willingness to try eye-tracking and hand-tracking enabled AR technologies in the future. Based on (mis)alignments we identify between comfort, perceived and actual comprehension, and decision factors, we discuss how future AR platforms can better communicate existing privacy protections, improve privacy-preserving designs, or better communicate risks.

View More Papers

Exploring Phishing Threats through QR Codes in Naturalistic Settings

Filipo Sharevski (DePaul University), Mattia Mossano, Maxime Fabian Veit, Gunther Schiefer, Melanie Volkamer (Karlsruhe Institute of Technology)

Read More

Automated Mass Malware Factory: The Convergence of Piggybacking and...

Heng Li (Huazhong University of Science and Technology), Zhiyuan Yao (Huazhong University of Science and Technology), Bang Wu (Huazhong University of Science and Technology), Cuiying Gao (Huazhong University of Science and Technology), Teng Xu (Huazhong University of Science and Technology), Wei Yuan (Huazhong University of Science and Technology), Xiapu Luo (The Hong Kong Polytechnic University)

Read More

CHAOS: Exploiting Station Time Synchronization in 802.11 Networks

Sirus Shahini (University of Utah), Robert Ricci (University of Utah)

Read More

Oreo: Protecting ASLR Against Microarchitectural Attacks

Shixin Song (Massachusetts Institute of Technology), Joseph Zhang (Massachusetts Institute of Technology), Mengjia Yan (Massachusetts Institute of Technology)

Read More