Jasmin Schwab (German Aerospace Center (DLR)), Alexander Nussbaum (University of the Bundeswehr Munich), Anastasia Sergeeva (University of Luxembourg), Florian Alt (University of the Bundeswehr Munich and Ludwig Maximilian University of Munich), and Verena Distler (Aalto University)

Organizations depend on their employees’ long-term cooperation to help protect the organization from cybersecurity threats. Phishing attacks are the entry point for harmful followup attacks. The acceptance of training measures is thus crucial. Many organizations use simulated phishing campaigns to train employees to adopt secure behaviors. We conducted a preregistered vignette experiment (N=793), investigating the factors that make a simulated phishing campaign seem (un)acceptable, and their influence on employees’ intention to manipulate the campaign. In the experiment, we varied whether employees gave prior consent, whether the phishing email promised a financial incentive and the consequences for employees who clicked on the phishing link. We found that employees’ prior consent positively affected the acceptance of a simulated phishing campaign. The consequences of “employee interview” and “termination of the work contract” negatively affected acceptance. We found no statistically significant effects of consent, monetary incentive, and consequences on manipulation probability. Our results shed light on the factors influencing the acceptance of simulated phishing campaigns. Based on our findings, we recommend that organizations prioritize obtaining informed consent from employees before including them in simulated phishing campaigns and that they clearly describe their consequences. Organizations should carefully evaluate the acceptance of simulated phishing campaigns and consider alternative anti-phishing measures.

View More Papers

Raising Trust in the Food Supply Chain

Alexander Krumpholz, Marthie Grobler, Raj Gaire, Claire Mason, Shanae Burns (CSIRO Data61)

Read More

AlphaDog: No-Box Camouflage Attacks via Alpha Channel Oversight

Qi Xia (University of Texas at San Antonio), Qian Chen (University of Texas at San Antonio)

Read More

URVFL: Undetectable Data Reconstruction Attack on Vertical Federated Learning

Duanyi Yao (Hong Kong University of Science and Technology), Songze Li (Southeast University), Xueluan Gong (Wuhan University), Sizai Hou (Hong Kong University of Science and Technology), Gaoning Pan (Hangzhou Dianzi University)

Read More

Automated Expansion of Privacy Data Taxonomy for Compliant Data...

Yue Qin (Indiana University Bloomington & Central University of Finance and Economics), Yue Xiao (Indiana University Bloomington & IBM Research), Xiaojing Liao (Indiana University Bloomington)

Read More