Jacob Hopkins (Texas A&M University - Corpus Christi), Carlos Rubio-Medrano (Texas A&M University - Corpus Christi), Cori Faklaris (University of North Carolina at Charlotte)

Data is a critical resource for technologies such as Large Language Models (LLMs) that are driving significant economic gains. Due to its importance, many different organizations are collecting and analyzing as much data as possible to secure their growth and relevance, leading to non-trivial privacy risks. Among the areas with potential for increased privacy risks are voluntary data-sharing events, when individuals willingly exchange their personal data for some service or item. This often places them in positions where they have inadequate control over what data should be exchanged and how it should be used. To address this power imbalance, we aim to obtain, analyze, and dissect the many different behaviors and needs of both parties involved in such negotiations, namely, the data subjects, i.e., the individuals whose data is being exchanged, and the data requesters, i.e., those who want to acquire the data. As an initial step, we are developing a multi-stage user study to better understand the factors that govern the behavior of both data subjects and requesters while interacting in data exchange negotiations. In addition, we aim to identify the design elements that both parties require so that future privacy-enhancing technologies (PETs) prioritizing privacy negotiation algorithms can be further developed and deployed in practice.

View More Papers

Spatial-Domain Wireless Jamming with Reconfigurable Intelligent Surfaces

Philipp Mackensen (Ruhr University Bochum), Paul Staat (Max Planck Institute for Security and Privacy), Stefan Roth (Ruhr University Bochum), Aydin Sezgin (Ruhr University Bochum), Christof Paar (Max Planck Institute for Security and Privacy), Veelasha Moonsamy (Ruhr University Bochum)

Read More

What Are Brands Telling You About Smishing? A Cross-Industry...

Dev Vikesh Doshi (California State University San Marcos), Mehjabeen Tasnim (California State University San Marcos), Fernando Landeros (California State University San Marcos), Chinthagumpala Muni Venkatesh (California State University San Marcos), Daniel Timko (Emerging Threats Lab / Smishtank.com), Muhammad Lutfor Rahman (California State University San Marcos)

Read More

BULKHEAD: Secure, Scalable, and Efficient Kernel Compartmentalization with PKS

Yinggang Guo (State Key Laboratory for Novel Software Technology, Nanjing University; University of Minnesota), Zicheng Wang (State Key Laboratory for Novel Software Technology, Nanjing University), Weiheng Bai (University of Minnesota), Qingkai Zeng (State Key Laboratory for Novel Software Technology, Nanjing University), Kangjie Lu (University of Minnesota)

Read More