Seunghyeon Lee (KAIST, S2W LAB Inc.), Changhoon Yoon (S2W LAB Inc.), Heedo Kang (KAIST), Yeonkeun Kim (KAIST), Yongdae Kim (KAIST), Dongsu Han (KAIST), Sooel Son (KAIST), Seungwon Shin (KAIST, S2W LAB Inc.)

The Dark Web is notorious for being a major distribution channel of harmful content as well as unlawful goods. Perpetrators have also used cryptocurrencies to conduct illicit financial transactions while hiding their identities. The limited coverage and outdated data of the Dark Web in previous studies motivated us to conduct an in-depth investigative study to understand how perpetrators abuse cryptocurrencies in the Dark Web. We designed and implemented MFScope, a new framework which collects Dark Web data, extracts cryptocurrency information, and analyzes their usage characteristics on the Dark Web. Specifically, MFScope collected more than 27 million dark webpages and extracted around 10 million unique cryptocurrency addresses for Bitcoin, Ethereum, and Monero. It then classified their usages to identify trades of illicit goods and traced cryptocurrency money flows, to reveal black money operations on the Dark Web. In total, using MFScope we discovered that more than 80% of Bitcoin addresses on the Dark Web were used with malicious intent; their monetary volume was around 180 million USD, and they sent a large sum of their money to several popular cryptocurrency services (e.g., exchange services). Furthermore, we present two real-world unlawful services and demonstrate their Bitcoin transaction traces, which helps in understanding their marketing strategy as well as black money operations.

View More Papers

On the Challenges of Geographical Avoidance for Tor

Katharina Kohls (Ruhr-University Bochum), Kai Jansen (Ruhr-University Bochum), David Rupprecht (Ruhr-University Bochum), Thorsten Holz (Ruhr-University Bochum), Christina Pöpper (New York University Abu Dhabi)

Read More

Analyzing Semantic Correctness with Symbolic Execution: A Case Study...

Sze Yiu Chau (Purdue University), Moosa Yahyazadeh (The University of Iowa), Omar Chowdhury (The University of Iowa), Aniket Kate (Purdue University), Ninghui Li (Purdue University)

Read More

Anonymous Multi-Hop Locks for Blockchain Scalability and Interoperability

Giulio Malavolta (Friedrich-Alexander University Erlangen-Nürnberg), Pedro Moreno Sanchez (TU Wien), Clara Schneidewind (TU Wien), Aniket Kate (Purdue University), Matteo Maffei (TU Wien)

Read More

NoDoze: Combatting Threat Alert Fatigue with Automated Provenance Triage

Wajih Ul Hassan (NEC Laboratories America, Inc.; University of Illinois at Urbana–Champaign), Shengjian Guo (Virginia Tech), Ding Li (NEC Laboratories America, Inc.), Zhengzhang Chen (NEC Laboratories America, Inc.), Kangkook Jee (NEC Laboratories America, Inc.), Zhichun Li (NEC Laboratories America, Inc.), Adam Bates (University of Illinois at Urbana–Champaign)

Read More