Cormac Herley (Microsoft), Stuart Schechter (Unaffiliated)

Online guessing attacks against password servers can be hard to address. Approaches that throttle or block repeated guesses on an account (e.g., three strikes type lockout rules)
can be effective against depth-first attacks, but are of little help against breadth-first attacks that spread guesses very widely. At large providers with tens or hundreds of millions
of accounts breadth-first attacks offer a way to send millions or even billions of guesses without ever triggering the depth-first defenses.
The absence of labels and non-stationarity of attack traffic make it challenging to apply machine learning techniques.

We show how to accurately estimate the odds that an observation $x$ associated with a request is malicious. Our main assumptions are that successful malicious logins are a small
fraction of the total, and that the distribution of $x$ in the legitimate traffic is stationary, or very-slowly varying.
From these we show how we can estimate the ratio of bad-to-good traffic among any set of requests; how we can then identify subsets of the request data that contain least (or even no) attack traffic; how
these least-attacked subsets allow us to estimate the distribution of values of $x$ over the legitimate data, and hence calculate the odds ratio.
A sensitivity analysis shows that even when we fail to identify a subset with little attack traffic our odds ratio estimates are very robust.

View More Papers

We Value Your Privacy ... Now Take Some Cookies:...

Martin Degeling (Ruhr-Universität Bochum), Christine Utz (Ruhr-Universität Bochum), Christopher Lentzsch (Ruhr-Universität Bochum), Henry Hosseini (Ruhr-Universität Bochum), Florian Schaub (University of Michigan), Thorsten Holz (Ruhr-Universität Bochum)

Read More

NIC: Detecting Adversarial Samples with Neural Network Invariant Checking

Shiqing Ma (Purdue University), Yingqi Liu (Purdue University), Guanhong Tao (Purdue University), Wen-Chuan Lee (Purdue University), Xiangyu Zhang (Purdue University)

Read More

Measuring the Facebook Advertising Ecosystem

Athanasios Andreou (EURECOM), Márcio Silva (UFMG), Fabrício Benevenuto (UFMG), Oana Goga (Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG), Patrick Loiseau (Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP, LIG & MPI-SWS), Alan Mislove (Northeastern University)

Read More

A Systematic Framework to Generate Invariants for Anomaly Detection...

Cheng Feng (Imperial College London & Siemens Corporate Technology), Venkata Reddy Palleti (Singapore University of Technology and Design), Aditya Mathur (Singapore University of Technology and Design), Deeph Chana (Imperial College London)

Read More