Cormac Herley (Microsoft), Stuart Schechter (Unaffiliated)

Online guessing attacks against password servers can be hard to address. Approaches that throttle or block repeated guesses on an account (e.g., three strikes type lockout rules)
can be effective against depth-first attacks, but are of little help against breadth-first attacks that spread guesses very widely. At large providers with tens or hundreds of millions
of accounts breadth-first attacks offer a way to send millions or even billions of guesses without ever triggering the depth-first defenses.
The absence of labels and non-stationarity of attack traffic make it challenging to apply machine learning techniques.

We show how to accurately estimate the odds that an observation $x$ associated with a request is malicious. Our main assumptions are that successful malicious logins are a small
fraction of the total, and that the distribution of $x$ in the legitimate traffic is stationary, or very-slowly varying.
From these we show how we can estimate the ratio of bad-to-good traffic among any set of requests; how we can then identify subsets of the request data that contain least (or even no) attack traffic; how
these least-attacked subsets allow us to estimate the distribution of values of $x$ over the legitimate data, and hence calculate the odds ratio.
A sensitivity analysis shows that even when we fail to identify a subset with little attack traffic our odds ratio estimates are very robust.

View More Papers

Master of Web Puppets: Abusing Web Browsers for Persistent...

Panagiotis Papadopoulos (FORTH-ICS, Greece), Panagiotis Ilia (FORTH-ICS), Michalis Polychronakis (Stony Brook University, USA), Evangelos P. Markatos (FORTH-ICS, Greece), Sotiris Ioannidis (FORTH-ICS, Greece), Giorgos Vasiliadis (FORTH-ICS, Greece)

Read More

How Bad Can It Git? Characterizing Secret Leakage in...

Michael Meli (North Carolina State University), Matthew R. McNiece (Cisco Systems and North Carolina State University), Bradley Reaves (North Carolina State University)

Read More

Cracking the Wall of Confinement: Understanding and Analyzing Malicious...

Eihal Alowaisheq (Indiana University, King Saud University), Peng Wang (Indiana University), Sumayah Alrwais (King Saud University), Xiaojing Liao (Indiana University), XiaoFeng Wang (Indiana University), Tasneem Alowaisheq (Indiana University, King Saud University), Xianghang Mi (Indiana University), Siyuan Tang (Indiana University), Baojun Liu (Tsinghua University)

Read More

TIMBER-V: Tag-Isolated Memory Bringing Fine-grained Enclaves to RISC-V

Samuel Weiser (Graz University of Technology), Mario Werner (Graz University of Technology), Ferdinand Brasser (Technische Universität Darmstadt), Maja Malenko (Graz University of Technology), Stefan Mangard (Graz University of Technology), Ahmad-Reza Sadeghi (Technische Universität Darmstadt)

Read More