Sourav Das (Department of Computer Science and Engineering, Indian Institute of Technology Delhi), Vinay Joseph Ribeiro (Department of Computer Science and Engineering, Indian Institute of Technology Delhi), Abhijeet Anand (Department of Computer Science and Engineering, Indian Institute of Technology Delhi)

One major shortcoming of permissionless blockchains such as Bitcoin and Ethereum is that they are unsuitable for running Computationally Intensive smart Contracts (CICs). This prevents such blockchains from running Machine Learning algorithms, Zero-Knowledge proofs, etc. which may need non-trivial computation.

In this paper, we present YODA, which is to the best of our knowledge the first solution for efficient computation of CICs in permissionless blockchains with guarantees for a threat model with both Byzantine and selfish nodes. YODA selects one or more execution sets (ES) via Sortition to execute a particular CIC off-chain. One key innovation is the MultI-Round Adaptive Consensus using Likelihood Estimation (MiRACLE) algorithm based on sequential hypothesis testing. MiRACLE allows the execution sets to be small thus making YODA efficient while ensuring correct CIC execution with high probability. It adapts the number of ES sets automatically depending on the concentration of Byzantine nodes in the system and is optimal in terms of the expected number of ES sets used in certain scenarios. Through a suite of economic incentives and technical mechanisms such as the novel Randomness Inserted Contract Execution (RICE) algorithm, we force selfish nodes to behave honestly. We also prove that the honest behavior of selfish nodes is an approximate Nash Equilibrium. We present the system design and details of YODA and prove the security properties of MiRACLE and RICE. Our prototype implementation built on top of Ethereum demonstrates the ability of YODA to run CICs with orders of magnitude higher gas per unit time as well as total gas requirements than Ethereum currently supports. It also demonstrates the low overheads of RICE.

View More Papers

Oligo-Snoop: A Non-Invasive Side Channel Attack Against DNA Synthesis...

Sina Faezi (University of California, Irvine), Sujit Rokka Chhetri (University of California, Irvine), Arnav Vaibhav Malawade (University of California, Irvine), John Charles Chaput (University of California, Irvine), William Grover (University of California, Riverside), Philip Brisk (University of California, Riverside), Mohammad Abdullah Al Faruque (University of California, Irvine)

Read More

JavaScript Template Attacks: Automatically Inferring Host Information for Targeted...

Michael Schwarz (Graz University of Technology), Florian Lackner (Graz University of Technology), Daniel Gruss (Graz University of Technology)

Read More

NAUTILUS: Fishing for Deep Bugs with Grammars

Cornelius Aschermann (Ruhr-Universität Bochum), Tommaso Frassetto (Technische Universität Darmstadt), Thorsten Holz (Ruhr-Universität Bochum), Patrick Jauernig (Technische Universität Darmstadt), Ahmad-Reza Sadeghi (Technische Universität Darmstadt), Daniel Teuchert (Ruhr-Universität Bochum)

Read More

Analyzing Semantic Correctness with Symbolic Execution: A Case Study...

Sze Yiu Chau (Purdue University), Moosa Yahyazadeh (The University of Iowa), Omar Chowdhury (The University of Iowa), Aniket Kate (Purdue University), Ninghui Li (Purdue University)

Read More