Meng Luo (Stony Brook University), Pierre Laperdrix (Stony Brook University), Nima Honarmand (Stony Brook University), Nick Nikiforakis (Stony Brook University)

Recent market share statistics show that mobile device traffic has overtaken
that of traditional desktop computers. Users spend an increasing amount of time
on their smartphones and tablets, while the web continues to be the platform
of choice for delivering new applications to users. In this environment, it
is necessary for web applications to utilize all the tools at their disposal
to protect mobile users against popular web application attacks.
In this paper, we perform the first study of the support of popular
web-application security mechanisms (such as the Content-Security
Policy, HTTP Strict Transport Security, and Referrer Policy) across
mobile browsers. We design 395 individual tests covering 8
different security mechanisms, and utilize them to evaluate the
security-mechanism support in the 20 most popular browser families on
Android. Moreover, by collecting and testing browser versions from the
last seven years, we evaluate a total of 351 unique browser versions
against the aforementioned tests, collecting more than 138K test
results.

By analyzing these results, we find that, although mobile browsers
generally support more security mechanisms over time, not all browsers
evolve in the same way. We discover popular browsers, with millions
of downloads, which do not support the majority of the tested
mechanisms, and identify design choices, followed by the majority of
browsers, which leave hundreds of popular websites open to
clickjacking attacks. Moreover, we discover the presence of multi-year
vulnerability windows between the time when popular websites start
utilizing a security mechanism and when mobile browsers enforce it.
Our findings highlight the need for continuous security testing of
mobile web browsers, as well as server-side frameworks which can adapt
to the level of security that each browser can guarantee.

View More Papers

Robust Performance Metrics for Authentication Systems

Shridatt Sugrim (Rutgers University), Can Liu (Rutgers University), Meghan McLean (Rutgers University), Janne Lindqvist (Rutgers University)

Read More

Coconut: Threshold Issuance Selective Disclosure Credentials with Applications to...

Alberto Sonnino (University College London (UCL)), Mustafa Al-Bassam (University College London (UCL)), Shehar Bano (University College London (UCL)), Sarah Meiklejohn (University College London (UCL)), George Danezis (University College London (UCL))

Read More

Statistical Privacy for Streaming Traffic

Xiaokuan Zhang (The Ohio State University), Jihun Hamm (The Ohio State University), Michael K. Reiter (University of North Carolina at Chapel Hill), Yinqian Zhang (The Ohio State University)

Read More

Automating Patching of Vulnerable Open-Source Software Versions in Application...

Ruian Duan (Georgia Institute of Technology), Ashish Bijlani (Georgia Institute of Technology), Yang Ji (Georgia Institute of Technology), Omar Alrawi (Georgia Institute of Technology), Yiyuan Xiong (Peking University), Moses Ike (Georgia Institute of Technology), Brendan Saltaformaggio (Georgia Institute of Technology), Wenke Lee (Georgia Institute of Technology)

Read More