Lianying Zhao (Concordia University), Mohammad Mannan (Concordia University)

Unauthorized data alteration has been a long-standing threat since the emergence of malware. System and application software can be reinstalled and hardware can be replaced, but user data is priceless in many cases. Especially in recent years, ransomware has become high-impact due to its direct monetization model. State-of-the-art defenses are mostly based on known signature or behavior analysis, and more importantly, require an uncompromised OS kernel. However, malware with the highest software privileges has shown its obvious existence.

We propose to move from current detection/recovery based mechanisms to data loss prevention, where the focus is on armoring data instead of counteracting malware. Our solution,
Inuksuk, relies on today’s Trusted Execution Environments (TEEs), as available both on the CPU and storage device, to achieve programmable write protection. We back up a copy of user-selected files as write-protected at all times, and subsequent updates are written as new versions securely through TEE. We implement Inuksuk on Windows 7 and 10, and Linux (Ubuntu); our core design is OS and application agnostic, and incurs no run-time performance penalty for applications. File transfer disruption can be eliminated or alleviated through access modes and customizable update policies (e.g., interval, granularity). For Inuksuk’s adoptability in modern OSes, we have also ported Flicker (EuroSys 2008), a defacto standard tool for in-OS privileged TEE management, to the latest 64-bit Windows.

View More Papers

Graph-based Security and Privacy Analytics via Collective Classification with...

Binghui Wang (Iowa State University), Jinyuan Jia (Iowa State University), Neil Zhenqiang Gong (Iowa State University)

Read More

DNS Cache-Based User Tracking

Amit Klein (Bar Ilan University), Benny Pinkas (Bar Ilan University)

Read More

CRCount: Pointer Invalidation with Reference Counting to Mitigate Use-after-free...

Jangseop Shin (Seoul National University and Inter-University Semiconductor Research Center), Donghyun Kwon (Seoul National University and Inter-University Semiconductor Research Center), Jiwon Seo (Seoul National University and Inter-University Semiconductor Research Center), Yeongpil Cho (Soongsil University), Yunheung Paek (Seoul National University and Inter-University Semiconductor Research Center)

Read More

Enemy At the Gateways: Censorship-Resilient Proxy Distribution Using Game...

Milad Nasr (University of Massachusetts Amherst), Sadegh Farhang (Pennsylvania State University), Amir Houmansadr (University of Massachusetts Amherst), Jens Grossklags (Technical University of Munich)

Read More