Shasha Li (University of California Riverside), Ajaya Neupane (University of California Riverside), Sujoy Paul (University of California Riverside), Chengyu Song (University of California Riverside), Srikanth V. Krishnamurthy (University of California Riverside), Amit K. Roy Chowdhury (University of California Riverside), Ananthram Swami (United States Army Research Laboratory)

Recent research has demonstrated the brittleness of machine learning systems to adversarial perturbations. However, the studies have been mostly limited to perturbations on images and more generally, classification tasks that do not deal with real-time stream inputs. In this paper we ask ”Are adversarial perturbations that cause misclassification in real-time video classification systems possible, and if so what properties must they satisfy?” Real-time video classification systems find application in surveillance applications, smart vehicles, and smart elderly care and thus, misclassification could be particularly harmful (e.g., a mishap at an elderly care facility may be missed). Video classification systems take video clips as inputs and these clip boundaries are not deterministic. We show that perturbations that do not take “the indeterminism in the clip boundaries input to the video classifier” into account, do not achieve high attack success rates. We propose novel approaches for generating 3D adversarial perturbations (perturbation clips) that exploit recent advances in generative models to not only overcome this key challenge but also provide stealth. In particular, our most potent 3D adversarial perturbations cause targeted activities in video streams to be misclassified with rates over 80%. At the same time, they also ensure that the perturbations leave other (untargeted) activities largely unaffected making them extremely stealthy. Finally, we also derive a single-frame (2D) perturbation that can be applied to every frame in a video stream, and which in many cases, achieves extremely high misclassification rates.

View More Papers

Quantity vs. Quality: Evaluating User Interest Profiles Using Ad...

Muhammad Ahmad Bashir (Northeastern University), Umar Farooq (LUMS Pakistan), Maryam Shahid (LUMS Pakistan), Muhammad Fareed Zaffar (LUMS Pakistan), Christo Wilson (Northeastern University)

Read More

Fine-Grained and Controlled Rewriting in Blockchains: Chameleon-Hashing Gone Attribute-Based

David Derler (DFINITY), Kai Samelin (TÜV Rheinland i-sec GmbH), Daniel Slamanig (AIT Austrian Institute of Technology), Christoph Striecks (AIT Austrian Institute of Technology)

Read More

ConcurORAM: High-Throughput Stateless Parallel Multi-Client ORAM

Anrin Chakraborti (Stony Brook University), Radu Sion (Stony Brook University)

Read More

PeriScope: An Effective Probing and Fuzzing Framework for the...

Dokyung Song (University of California, Irvine), Felicitas Hetzelt (Technical University of Berlin), Dipanjan Das (University of California, Santa Barbara), Chad Spensky (University of California, Santa Barbara), Yeoul Na (University of California, Irvine), Stijn Volckaert (University of California, Irvine and KU Leuven), Giovanni Vigna (University of California, Santa Barbara), Christopher Kruegel (University of California, Santa Barbara),…

Read More