Maria Apostolaki (ETH Zurich), Gian Marti (ETH Zurich), Jan Müller (ETH Zurich), Laurent Vanbever (ETH Zurich)

Nowadays Internet routing attacks remain practi- cally effective as existing countermeasures either fail to provide protection guarantees or are not easily deployable. Blockchain systems are particularly vulnerable to such attacks as they rely on Internet-wide communications to reach consensus. In particular, Bitcoin—the most widely-used cryptocurrency—can be split in half by any AS-level adversary using BGP hijacking.

In this paper, we present SABRE, a secure and scalable Bitcoin relay network which relays blocks worldwide through a set of connections that are resilient to routing attacks. SABRE runs alongside the existing peer-to-peer network and is easily deployable. As a critical system, SABRE design is highly resilient and can efficiently handle high bandwidth loads, including Denial of Service attacks.

We built SABRE around two key technical insights. First, we leverage fundamental properties of inter-domain routing (BGP) policies to host relay nodes: (i) in networks that are inherently protected against routing attacks; and (ii) on paths that are economically-preferred by the majority of Bitcoin clients. These properties are generic and can be used to protect other Blockchain-based systems. Second, we leverage the fact that relaying blocks is communication-heavy, not computation-heavy. This enables us to offload most of the relay operations to programmable network hardware (using the P4 programming language). Thanks to this hardware/software co-design, SABRE nodes operate seamlessly under high load while mitigating the effects of malicious clients.

We present a complete implementation of SABRE together with an extensive evaluation. Our results demonstrate that SABRE is effective at securing Bitcoin against routing attacks, even with deployments of as few as 6 nodes.

View More Papers

TextBugger: Generating Adversarial Text Against Real-world Applications

Jinfeng Li (Zhejiang University), Shouling Ji (Zhejiang University), Tianyu Du (Zhejiang University), Bo Li (University of California, Berkeley), Ting Wang (Lehigh University)

Read More

NoDoze: Combatting Threat Alert Fatigue with Automated Provenance Triage

Wajih Ul Hassan (NEC Laboratories America, Inc.; University of Illinois at Urbana–Champaign), Shengjian Guo (Virginia Tech), Ding Li (NEC Laboratories America, Inc.), Zhengzhang Chen (NEC Laboratories America, Inc.), Kangkook Jee (NEC Laboratories America, Inc.), Zhichun Li (NEC Laboratories America, Inc.), Adam Bates (University of Illinois at Urbana–Champaign)

Read More

Automating Patching of Vulnerable Open-Source Software Versions in Application...

Ruian Duan (Georgia Institute of Technology), Ashish Bijlani (Georgia Institute of Technology), Yang Ji (Georgia Institute of Technology), Omar Alrawi (Georgia Institute of Technology), Yiyuan Xiong (Peking University), Moses Ike (Georgia Institute of Technology), Brendan Saltaformaggio (Georgia Institute of Technology), Wenke Lee (Georgia Institute of Technology)

Read More

Distinguishing Attacks from Legitimate Authentication Traffic at Scale

Cormac Herley (Microsoft), Stuart Schechter (Unaffiliated)

Read More