HyungSeok Han (KAIST), DongHyeon Oh (KAIST), Sang Kil Cha (KAIST)

JavaScript engines are an attractive target for attackers due to their popularity and flexibility in building exploits. Current state-of-the-art fuzzers for finding JavaScript engine vulnerabilities focus mainly on generating syntactically correct test cases based on either a predefined context-free grammar or a trained probabilistic language model. Unfortunately, syntactically correct JavaScript sentences are often semantically invalid at runtime. Furthermore, statically analyzing the semantics of JavaScript code is challenging due to its dynamic nature: JavaScript code is generated at runtime, and JavaScript expressions are dynamically-typed. To address this challenge, we propose a novel test case generation algorithm that we call semantics-aware assembly, and implement it in a fuzz testing tool termed CodeAlchemist. Our tool can generate arbitrary JavaScript code snippets that are both semantically and syntactically correct, and it effectively yields test cases that can crash JavaScript engines. We found numerous vulnerabilities of the latest JavaScript engines with CodeAlchemist and reported them to the vendors.

View More Papers

REDQUEEN: Fuzzing with Input-to-State Correspondence

Cornelius Aschermann (Ruhr-Universität Bochum), Sergej Schumilo (Ruhr-Universität Bochum), Tim Blazytko (Ruhr-Universität Bochum), Robert Gawlik (Ruhr-Universität Bochum), Thorsten Holz (Ruhr-Universität Bochum)

Read More

TEE-aided Write Protection Against Privileged Data Tampering

Lianying Zhao (Concordia University), Mohammad Mannan (Concordia University)

Read More

Measurement and Analysis of Hajime, a Peer-to-peer IoT Botnet

Stephen Herwig (University of Maryland), Katura Harvey (University of Maryland, Max Planck Institute for Software Systems (MPI-SWS)), George Hughey (University of Maryland), Richard Roberts (University of Maryland, Max Planck Institute for Software Systems (MPI-SWS)), Dave Levin (University of Maryland)

Read More

PeriScope: An Effective Probing and Fuzzing Framework for the...

Dokyung Song (University of California, Irvine), Felicitas Hetzelt (Technical University of Berlin), Dipanjan Das (University of California, Santa Barbara), Chad Spensky (University of California, Santa Barbara), Yeoul Na (University of California, Irvine), Stijn Volckaert (University of California, Irvine and KU Leuven), Giovanni Vigna (University of California, Santa Barbara), Christopher Kruegel (University of California, Santa Barbara),…

Read More