Cornelius Aschermann (Ruhr-Universität Bochum), Sergej Schumilo (Ruhr-Universität Bochum), Tim Blazytko (Ruhr-Universität Bochum), Robert Gawlik (Ruhr-Universität Bochum), Thorsten Holz (Ruhr-Universität Bochum)

Automated software testing based on fuzzing has experienced a revival in recent years. Especially feedback-driven fuzzing has become well-known for its ability to efficiently perform randomized testing with limited input corpora.
Despite a lot of progress, two common problems are magic numbers and (nested) checksums. Computationally expensive methods such as taint tracking and symbolic execution are typically used to overcome such roadblocks. Unfortunately, such methods often require access to source code, a rather precise description of the environment (e.g., behavior of library calls or the underlying OS), or the exact semantics of the platform's instruction set.

In this paper, we introduce a lightweight, yet very effective alternative to taint tracking and symbolic execution to facilitate and optimize state-of-the-art feedback fuzzing that easily scales to large binary applications and unknown environments.
We observe that during the execution of a given program, parts of the input often end up directly (i.e., nearly unmodified) in the program state. This input-to-state correspondence
can be exploited to create a robust method to
overcome common fuzzing roadblocks in a highly effective and efficient manner.
Our prototype implementation, called REDQUEEN, is able to solve magic bytes and (nested) checksum tests automatically for a given binary executable.
Additionally, we show that our techniques outperform various
state-of-the-art tools on a wide variety of targets across different privilege levels (kernel-space and userland) with no platform-specific code.
REDQUEEN is the first method to find more than 100% of the bugs planted in LAVA-M across all targets. Furthermore, we were able to discover 65 new bugs and obtained 16 CVEs in multiple programs and OS kernel drivers. Finally, our evaluation demonstrates that REDQUEEN is fast, widely applicable and outperforms concurrent approaches by up to three orders of magnitude.

View More Papers

Neural Machine Translation Inspired Binary Code Similarity Comparison beyond...

Fei Zuo (University of South Carolina), Xiaopeng Li (University of South Carolina), Patrick Young (Temple University), Lannan Luo (University of South Carolina), Qiang Zeng (University of South Carolina), Zhexin Zhang (University of South Carolina)

Read More

Countering Malicious Processes with Process-DNS Association

Suphannee Sivakorn (Columbia University), Kangkook Jee (NEC Labs America), Yixin Sun (Princeton University), Lauri Korts-Pärn (Cyber Defense Institute), Zhichun Li (NEC Labs America), Cristian Lumezanu (NEC Labs America), Zhenyu Wu (NEC Labs America), Lu-An Tang (NEC Labs America), Ding Li (NEC Labs America)

Read More

Ginseng: Keeping Secrets in Registers When You Distrust the...

Min Hong Yun (Rice University), Lin Zhong (Rice University)

Read More

CRCount: Pointer Invalidation with Reference Counting to Mitigate Use-after-free...

Jangseop Shin (Seoul National University and Inter-University Semiconductor Research Center), Donghyun Kwon (Seoul National University and Inter-University Semiconductor Research Center), Jiwon Seo (Seoul National University and Inter-University Semiconductor Research Center), Yeongpil Cho (Soongsil University), Yunheung Paek (Seoul National University and Inter-University Semiconductor Research Center)

Read More