Anrin Chakraborti (Stony Brook University), Radu Sion (Stony Brook University)

ConcurORAM is a parallel, multi-client oblivious RAM (ORAM) that eliminates waiting for concurrent stateless clients and allows over-all throughput to scale gracefully, without requiring trusted third party components (proxies) or direct inter-client coordination. A key insight behind ConcurORAM is the fact that, during multi-client data access, only a subset of the concurrently-accessed server-hosted data structures require access privacy guarantees. Everything else can be safely implemented as oblivious data structures that are later synced securely and efficiently during an ORAM “eviction”.

Further, since a major contributor to latency is the eviction– in which client-resident data is reshuffled and reinserted back encrypted into the main server database – ConcurORAM also enables multiple concurrent clients to evict asynchronously, in parallel (without compromising consistency), and in the back-ground without having to block ongoing queries. As a result, throughput scales well with increasing number of concurrent clients and is not significantly impacted by evictions. For example, about 65 queries per second can be executed in parallel by 30 concurrent clients, a 2x speedup over the state-of-the-art. The query access time for individual clients increases by only 2x when compared to a single-client deployment.

View More Papers

Coconut: Threshold Issuance Selective Disclosure Credentials with Applications to...

Alberto Sonnino (University College London (UCL)), Mustafa Al-Bassam (University College London (UCL)), Shehar Bano (University College London (UCL)), Sarah Meiklejohn (University College London (UCL)), George Danezis (University College London (UCL))

Read More

PeriScope: An Effective Probing and Fuzzing Framework for the...

Dokyung Song (University of California, Irvine), Felicitas Hetzelt (Technical University of Berlin), Dipanjan Das (University of California, Santa Barbara), Chad Spensky (University of California, Santa Barbara), Yeoul Na (University of California, Irvine), Stijn Volckaert (University of California, Irvine and KU Leuven), Giovanni Vigna (University of California, Santa Barbara), Christopher Kruegel (University of California, Santa Barbara),…

Read More

Constructing an Adversary Solver for Equihash

Xiaofei Bai (School of Computer Science, Fudan University), Jian Gao (School of Computer Science, Fudan University), Chenglong Hu (School of Computer Science, Fudan University), Liang Zhang (School of Computer Science, Fudan University)

Read More

Stealthy Adversarial Perturbations Against Real-Time Video Classification Systems

Shasha Li (University of California Riverside), Ajaya Neupane (University of California Riverside), Sujoy Paul (University of California Riverside), Chengyu Song (University of California Riverside), Srikanth V. Krishnamurthy (University of California Riverside), Amit K. Roy Chowdhury (University of California Riverside), Ananthram Swami (United States Army Research Laboratory)

Read More