Anrin Chakraborti (Stony Brook University), Radu Sion (Stony Brook University)

ConcurORAM is a parallel, multi-client oblivious RAM (ORAM) that eliminates waiting for concurrent stateless clients and allows over-all throughput to scale gracefully, without requiring trusted third party components (proxies) or direct inter-client coordination. A key insight behind ConcurORAM is the fact that, during multi-client data access, only a subset of the concurrently-accessed server-hosted data structures require access privacy guarantees. Everything else can be safely implemented as oblivious data structures that are later synced securely and efficiently during an ORAM “eviction”.

Further, since a major contributor to latency is the eviction– in which client-resident data is reshuffled and reinserted back encrypted into the main server database – ConcurORAM also enables multiple concurrent clients to evict asynchronously, in parallel (without compromising consistency), and in the back-ground without having to block ongoing queries. As a result, throughput scales well with increasing number of concurrent clients and is not significantly impacted by evictions. For example, about 65 queries per second can be executed in parallel by 30 concurrent clients, a 2x speedup over the state-of-the-art. The query access time for individual clients increases by only 2x when compared to a single-client deployment.

View More Papers

IoTGuard: Dynamic Enforcement of Security and Safety Policy in...

Z. Berkay Celik (Penn State University), Gang Tan (Penn State University), Patrick McDaniel (Penn State University)

Read More

Graph-based Security and Privacy Analytics via Collective Classification with...

Binghui Wang (Iowa State University), Jinyuan Jia (Iowa State University), Neil Zhenqiang Gong (Iowa State University)

Read More

rORAM: Efficient Range ORAM with O(log2 N) Locality

Anrin Chakraborti (Stony Brook University), Adam J. Aviv (United States Naval Academy), Seung Geol Choi (United States Naval Academy), Travis Mayberry (United States Naval Academy), Daniel S. Roche (United States Naval Academy), Radu Sion (Stony Brook University)

Read More

Cleaning Up the Internet of Evil Things: Real-World Evidence...

Orcun Cetin (Delft University of Technology), Carlos Gañán (Delft University of Technology), Lisette Altena (Delft University of Technology), Takahiro Kasama (National Institute of Information and Communications Technology), Daisuke Inoue (National Institute of Information and Communications Technology), Kazuki Tamiya (Yokohama National University), Ying Tie (Yokohama National University), Katsunari Yoshioka (Yokohama National University), Michel van Eeten (Delft…

Read More