Lei Zhao (Wuhan University), Yue Duan (University of California, Riverside), Heng Yin (University of California, Riverside), Jifeng Xuan (Wuhan University)

Hybrid fuzzing which combines fuzzing and concolic execution has become an advanced technique for software vulnerability detection. Based on the observation that fuzzing and concolic execution are complementary in nature, the state-of-the-art hybrid fuzzing systems deploy ``demand launch'' and ``optimal switch'' strategies. Although these ideas sound intriguing, we point out several fundamental limitations in them, due to oversimplified assumptions. We then propose a novel ``discriminative dispatch'' strategy to better utilize the capability of concolic execution. We design a novel Monte Carlo based probabilistic path prioritization model to quantify each path's difficulty and prioritize them for concolic execution. This model treats fuzzing as a random sampling process. It calculates each path's probability based on the sampling information. Finally, our model prioritizes and assigns the most difficult paths to concolic execution. We implement a prototype system DigFuzz and evaluate our system with two representative datasets. Results show that the concolic execution in DigFuzz outperforms than that in a state-of-the-art hybrid fuzzing system Driller in every major aspect. In particular, the concolic execution in DigFuzz contributes to discovering more vulnerabilities (12 vs. 5) and producing more code coverage (18.9% vs. 3.8%) on the CQE dataset than the concolic execution in Driller.

View More Papers

Master of Web Puppets: Abusing Web Browsers for Persistent...

Panagiotis Papadopoulos (FORTH-ICS, Greece), Panagiotis Ilia (FORTH-ICS), Michalis Polychronakis (Stony Brook University, USA), Evangelos P. Markatos (FORTH-ICS, Greece), Sotiris Ioannidis (FORTH-ICS, Greece), Giorgos Vasiliadis (FORTH-ICS, Greece)

Read More

TEE-aided Write Protection Against Privileged Data Tampering

Lianying Zhao (Concordia University), Mohammad Mannan (Concordia University)

Read More

TextBugger: Generating Adversarial Text Against Real-world Applications

Jinfeng Li (Zhejiang University), Shouling Ji (Zhejiang University), Tianyu Du (Zhejiang University), Bo Li (University of California, Berkeley), Ting Wang (Lehigh University)

Read More

Stealthy Adversarial Perturbations Against Real-Time Video Classification Systems

Shasha Li (University of California Riverside), Ajaya Neupane (University of California Riverside), Sujoy Paul (University of California Riverside), Chengyu Song (University of California Riverside), Srikanth V. Krishnamurthy (University of California Riverside), Amit K. Roy Chowdhury (University of California Riverside), Ananthram Swami (United States Army Research Laboratory)

Read More