Shiqi Shen (National University of Singapore), Shweta Shinde (National University of Singapore), Soundarya Ramesh (National University of Singapore), Abhik Roychoudhury (National University of Singapore), Prateek Saxena (National University of Singapore)

Symbolic execution is a powerful technique for program analysis. However, it has many limitations in practical applicability: the path explosion problem encumbers scalability, the need for language-specific implementation, the inability to handle complex dependencies, and the limited expressiveness of theories supported by underlying satisfiability checkers. Often, relationships between variables of interest are not expressible directly as purely symbolic constraints. To this end, we present a new approach—neuro-symbolic execution—which learns an approximation of the relationship between program values of interest, as a neural network. We develop a procedure for checking satisfiability of mixed constraints, involving both symbolic expressions and neural representations. We implement our new approach in a tool called NeuEx as an extension of KLEE, a state-of-the-art dynamic symbolic execution engine. NeuEx finds 33 exploits in a benchmark of 7 programs within 12 hours. This is an improvement in the bug finding efficacy of 94% over vanilla KLEE. We show that this new approach drives execution down difficult paths on which KLEE and other DSE extensions get stuck, eliminating limitations of purely SMT-based techniques.

View More Papers

Private Continual Release of Real-Valued Data Streams

Victor Perrier (Data61, CSIRO and ISAE-SUPAERO), Hassan Jameel Asghar (Macquarie University and Data61, CSIRO), Dali Kaafar (Macquarie University and Data61, CSIRO)

Read More

The use of TLS in Censorship Circumvention

Sergey Frolov (University of Colorado Boulder), Eric Wustrow (University of Colorado Boulder)

Read More

Robust Performance Metrics for Authentication Systems

Shridatt Sugrim (Rutgers University), Can Liu (Rutgers University), Meghan McLean (Rutgers University), Janne Lindqvist (Rutgers University)

Read More

rORAM: Efficient Range ORAM with O(log2 N) Locality

Anrin Chakraborti (Stony Brook University), Adam J. Aviv (United States Naval Academy), Seung Geol Choi (United States Naval Academy), Travis Mayberry (United States Naval Academy), Daniel S. Roche (United States Naval Academy), Radu Sion (Stony Brook University)

Read More