A. Theodore Markettos (University of Cambridge), Colin Rothwell (University of Cambridge), Brett F. Gutstein (Rice University), Allison Pearce (University of Cambridge), Peter G. Neumann (SRI International), Simon W. Moore (University of Cambridge), Robert N. M. Watson (University of Cambridge)

Direct Memory Access (DMA) attacks have been known for many years: DMA-enabled I/O peripherals have complete access to the state of a computer and can fully compromise it including reading and writing all of system memory.

With the popularity of Thunderbolt 3 over USB Type-C and smart internal devices, opportunities for these attacks to be performed casually with only seconds of physical access to a computer have greatly broadened. In response, commodity hardware and operating-system (OS) vendors have incorporated support for Input-Output Memory Management Units (IOMMUs), which impose memory protection on DMA, and are widely believed to protect against DMA attacks.

We investigate the state-of-the-art in IOMMU protection across OSes using a novel *I/O security research platform*, and find that current protections fall short when faced with a functional network peripheral that uses its complex interactions with the OS for ill intent, and demonstrate compromises against macOS, FreeBSD, and Linux, which notionally utilize IOMMUs to protect against DMA attackers. Windows only uses the IOMMU in limited cases and remains vulnerable.

Using Thunderclap, an open-source FPGA research platform we built, we explore a number of novel exploit techniques to expose new classes of OS vulnerability. The complex vulnerability space for IOMMU-exposed shared memory available to DMA-enabled peripherals allows attackers to extract private data (sniffing cleartext VPN traffic) and hijack kernel control flow (launching a root shell) in seconds using devices such as USB-C projectors or power adapters.

We have worked closely with OS vendors to remedy these vulnerability classes, and they have now shipped substantial feature improvements and mitigations as a result of our work.

View More Papers

Automating Patching of Vulnerable Open-Source Software Versions in Application...

Ruian Duan (Georgia Institute of Technology), Ashish Bijlani (Georgia Institute of Technology), Yang Ji (Georgia Institute of Technology), Omar Alrawi (Georgia Institute of Technology), Yiyuan Xiong (Peking University), Moses Ike (Georgia Institute of Technology), Brendan Saltaformaggio (Georgia Institute of Technology), Wenke Lee (Georgia Institute of Technology)

Read More

A Systematic Framework to Generate Invariants for Anomaly Detection...

Cheng Feng (Imperial College London & Siemens Corporate Technology), Venkata Reddy Palleti (Singapore University of Technology and Design), Aditya Mathur (Singapore University of Technology and Design), Deeph Chana (Imperial College London)

Read More

Neural Machine Translation Inspired Binary Code Similarity Comparison beyond...

Fei Zuo (University of South Carolina), Xiaopeng Li (University of South Carolina), Patrick Young (Temple University), Lannan Luo (University of South Carolina), Qiang Zeng (University of South Carolina), Zhexin Zhang (University of South Carolina)

Read More

Don't Trust The Locals: Investigating the Prevalence of Persistent...

Marius Steffens (CISPA Helmholtz Center for Information Security), Christian Rossow (CISPA Helmholtz Center for Information Security), Martin Johns (TU Braunschweig), Ben Stock (CISPA Helmholtz Center for Information Security)

Read More