Zheng Leong Chua (National University of Singapore), Yanhao Wang (TCA/SKLCS, Institute of Software, Chinese Academy of Sciences), Teodora Baluta (National University of Singapore), Prateek Saxena (National University of Singapore), Zhenkai Liang (National University of Singapore), Purui Su (TCA/SKLCS, Institute of Software, Chinese Academy of Sciences)

Dynamic binary taint analysis has wide applications in the security analysis of commercial-off-the-shelf (COTS) binaries. One of the key challenges in dynamic binary analysis is to specify the taint rules that capture how taint information propagates for each instruction on an architecture. Most of the existing solutions specify taint rules using a deductive approach by summarizing the rules manually after analyzing the instruction semantics. Intuitively, taint propagation reflects on how an instruction input affects its output and thus can be observed from instruction executions. In this work, we propose an inductive method for taint propagation and develop a universal taint tracking engine that is architecture-agnostic. Our taint engine, TAINTINDUCE, can learn taint rules with minimal architectural knowledge by observing the execution behavior of instructions. To measure its correctness and guide taint rule generation, we define the precise notion of soundness for bit-level taint tracking in this novel setup. In our evaluation, we show that TAINT INDUCE automatically learns rules for 4 widely used architectures: x86, x64, AArch64, and MIPS-I. It can detect vulnerabilities for 24 CVEs in 15 applications on both Linux and Windows over millions of instructions and is comparable with other mature existing tools (TEMU [51], libdft [32], Triton [42]). TAINTINDUCE can be used as a standalone taint engine or be used to complement existing taint engines for unhandled instructions. Further, it can be used as a cross-referencing tool to uncover bugs in taint engines, emulation implementations and ISA documentations.

View More Papers

Latex Gloves: Protecting Browser Extensions from Probing and Revelation...

Alexander Sjösten (Chalmers University of Technology), Steven Van Acker (Chalmers University of Technology), Pablo Picazo-Sanchez (Chalmers University of Technology), Andrei Sabelfeld (Chalmers University of Technology)

Read More

Master of Web Puppets: Abusing Web Browsers for Persistent...

Panagiotis Papadopoulos (FORTH-ICS, Greece), Panagiotis Ilia (FORTH-ICS), Michalis Polychronakis (Stony Brook University, USA), Evangelos P. Markatos (FORTH-ICS, Greece), Sotiris Ioannidis (FORTH-ICS, Greece), Giorgos Vasiliadis (FORTH-ICS, Greece)

Read More

ExSpectre: Hiding Malware in Speculative Execution

Jack Wampler (University of Colorado Boulder), Ian Martiny (University of Colorado Boulder), Eric Wustrow (University of Colorado Boulder)

Read More

Stealthy Adversarial Perturbations Against Real-Time Video Classification Systems

Shasha Li (University of California Riverside), Ajaya Neupane (University of California Riverside), Sujoy Paul (University of California Riverside), Chengyu Song (University of California Riverside), Srikanth V. Krishnamurthy (University of California Riverside), Amit K. Roy Chowdhury (University of California Riverside), Ananthram Swami (United States Army Research Laboratory)

Read More