Sze Yiu Chau (Purdue University), Moosa Yahyazadeh (The University of Iowa), Omar Chowdhury (The University of Iowa), Aniket Kate (Purdue University), Ninghui Li (Purdue University)

We discuss how symbolic execution can be used to not only find low-level errors but also analyze the semantic correctness of protocol implementations. To avoid manually crafting test cases, we propose a strategy of meta-level search, which leverages constraints stemmed from the input formats to automatically generate concolic test cases. Additionally, to aid root-cause analysis, we develop constraint provenance tracking (CPT), a mechanism that associates atomic sub-formulas of path constraints with their corresponding source level origins. We demonstrate the power of symbolic analysis with a case study on PKCS#1 v1.5 signature verification. Leveraging meta-level search and CPT, we analyzed 15 recent open-source implementations using symbolic execution and found semantic flaws in 6 of them. Further analysis of these flaws showed that 4 implementations are susceptible to new variants of the Bleichenbacher low- exponent RSA signature forgery. One implementation suffers from potential denial of service attacks with purposefully crafted signatures. All our findings have been responsibly shared with the affected vendors. Among the flaws discovered, 6 new CVEs have been assigned to the immediately exploitable ones.

View More Papers

Profit: Detecting and Quantifying Side Channels in Networked Applications

Nicolás Rosner (University of California, Santa Barbara), Ismet Burak Kadron (University of California, Santa Barbara), Lucas Bang (Harvey Mudd College), Tevfik Bultan (University of California, Santa Barbara)

Read More

Distinguishing Attacks from Legitimate Authentication Traffic at Scale

Cormac Herley (Microsoft), Stuart Schechter (Unaffiliated)

Read More

Component-Based Formal Analysis of 5G-AKA: Channel Assumptions and Session...

Cas Cremers (CISPA Helmholtz Center for Information Security), Martin Dehnel-Wild (University of Oxford)

Read More

TextBugger: Generating Adversarial Text Against Real-world Applications

Jinfeng Li (Zhejiang University), Shouling Ji (Zhejiang University), Tianyu Du (Zhejiang University), Bo Li (University of California, Berkeley), Ting Wang (Lehigh University)

Read More