Tao Chen (City University of Hong Kong), Longfei Shangguan (Microsoft), Zhenjiang Li (City University of Hong Kong), Kyle Jamieson (Princeton University)

This paper presents Metamorph, a system that generates imperceptible audio that can survive over-the-air transmission to attack the neural network of a speech recognition system. The key challenge stems from how to ensure the added perturbation of the original audio in advance at the sender side is immune to unknown signal distortions during the transmission process. Our empirical study reveals that signal distortion is mainly due to device and channel frequency selectivity but with different characteristics. This brings a chance to capture and further pre-code this impact to generate adversarial examples that are robust to the over-the-air transmission. We leverage this opportunity in Metamorph and obtain an initial perturbation that captures the core distortion's impact from only a small set of prior measurements, and then take advantage of a domain adaptation algorithm to refine the perturbation to further improve the attack distance and reliability. Moreover, we consider also reducing human perceptibility of the added perturbation. Evaluation achieves a high attack success rate (95%) over the attack distance of up to 6 m. Within a moderate distance, e.g., 3 m, Metamorph maintains a high success rate (98%), yet can be further adapted to largely improve the audio quality, confirmed by a human perceptibility study.

View More Papers

ConTExT: A Generic Approach for Mitigating Spectre

Michael Schwarz (Graz University of Technology), Moritz Lipp (Graz University of Technology), Claudio Canella (Graz University of Technology), Robert Schilling (Graz University of Technology and Know-Center GmbH), Florian Kargl (Graz University of Technology), Daniel Gruss (Graz University of Technology)

Read More

DefRec: Establishing Physical Function Virtualization to Disrupt Reconnaissance of...

Hui Lin (University of Nevada, Reno), Jianing Zhuang (University of Nevada, Reno), Yih-Chun Hu (University of Illinois, Urbana-Champaign), Huayu Zhou (University of Nevada, Reno)

Read More

SymTCP: Eluding Stateful Deep Packet Inspection with Automated Discrepancy...

Zhongjie Wang (University of California, Riverside), Shitong Zhu (University of California, Riverside), Yue Cao (University of California, Riverside), Zhiyun Qian (University of California, Riverside), Chengyu Song (University of California, Riverside), Srikanth V. Krishnamurthy (University of California, Riverside), Kevin S. Chan (U.S. Army Research Lab), Tracy D. Braun (U.S. Army Research Lab)

Read More

Into the Deep Web: Understanding E-commerce Fraud from Autonomous...

Peng Wang (Indiana University Bloomington), Xiaojing Liao (Indiana University Bloomington), Yue Qin (Indiana University Bloomington), XiaoFeng Wang (Indiana University Bloomington)

Read More