Sergej Schumilo (Ruhr-Universität Bochum), Cornelius Aschermann (Ruhr-Universität Bochum), Ali Abbasi (Ruhr-Universität Bochum), Simon Wörner (Ruhr-Universität Bochum), Thorsten Holz (Ruhr-Universität Bochum)

Applying modern fuzzers to novel targets is often a very lucrative venture. Hypervisors are part of a very critical code base: compromising them could allow an attacker to compromise the whole cloud infrastructure of any cloud provider. In this paper, we build a novel fuzzer that aims explicitly at testing modern hypervisors.

Our high throughput fuzzer design for long running interactive targets allows us to fuzz a large number of hypervisors, both open source, and proprietary. In contrast to one-dimensional fuzzers such as AFL, HYPER-CUBE can interact with any number of interfaces in any order.

Our evaluation shows that we can find more bugs (over 2x) and coverage (as much as 2x) than state of the art hypervisor fuzzers. Additionally, in most cases, we were able to do so using multiple orders of magnitude less time than comparable fuzzers. HYPER-CUBE was also able to rediscover a set of well-known vulnerabilities for hypervisors, such as VENOM, in less than five minutes. In total, HYPER-CUBE found 54 novel bugs, and so far we obtained 37 CVEs.

Our evaluation results demonstrates that next generation coverage-guided fuzzers should incorporate a higher-throughput design for long running targets such as hypervisors.

View More Papers

Carnus: Exploring the Privacy Threats of Browser Extension Fingerprinting

Soroush Karami (University of Illinois at Chicago), Panagiotis Ilia (University of Illinois at Chicago), Konstantinos Solomos (University of Illinois at Chicago), Jason Polakis (University of Illinois at Chicago)

Read More

Genotype Extraction and False Relative Attacks: Security Risks to...

Peter Ney (University of Washington), Luis Ceze (University of Washington), Tadayoshi Kohno (University of Washington)

Read More

A View from the Cockpit: Exploring Pilot Reactions to...

Matthew Smith (University of Oxford), Martin Strohmeier (University of Oxford), Jonathan Harman (Vrije Universiteit Amsterdam), Vincent Lenders (armasuisse Science and Technology), Ivan Martinovic (University of Oxford)

Read More

Melting Pot of Origins: Compromising the Intermediary Web Services...

Takuya Watanabe (NTT), Eitaro Shioji (NTT), Mitsuaki Akiyama (NTT), Tatsuya Mori (Waseda University, NICT, and RIKEN AIP)

Read More