Marcel Kneib (Robert Bosch GmbH), Oleg Schell (Bosch Engineering GmbH), Christopher Huth (Robert Bosch GmbH)

In vehicles, internal Electronic Control Units (ECUs) are increasingly prone to adversarial exploitation over wireless connections due to ongoing digitalization. Controlling an ECU allows an adversary to send messages to the internal vehicle bus and thereby to control various vehicle functions. Access to the Controller Area Network (CAN), the most widely used bus technology, is especially severe as it controls brakes and steering. However, state of the art receivers are not able to identify the sender of a frame. Retrofitting frame authenticity, e.g. through Message Authentication Codes (MACs), is only possible to a limited extent due to reduced bandwidth, low payload and limited computational resources. To address this problem, observation in analog differences of the CAN signal was proposed to determine the actual sender. These prior approaches, which exhibit good identification rates in some cases, require high sample rates and a high computational effort. With EASI we significantly reduce the required resources and at the same time show increased identification rates of 99.98% by having no false positives in a prototype structure and two series production vehicles. In comparison to the most lightweight approach so far, we have reduced the memory footprint and the computational requirements by a factor of 168 and 142, respectively. In addition, we show the feasibility of EASI and thus for the first time that sender identification is realizable using comprehensive signal characteristics on resource-constrained platforms. Due to the lightweight design, we achieved a classification in under 100,$mu$s with a training time of 2.61 seconds. We also showed the ability to adapt the system to incremental changes during operation. Since cost effectiveness is of utmost importance in the automotive industry due to high production volumes, the achieved improvements are significant and necessary to realize sender identification.

View More Papers

PhantomCache: Obfuscating Cache Conflicts with Localized Randomization

Qinhan Tan (Zhejiang University), Zhihua Zeng (Zhejiang University), Kai Bu (Zhejiang University), Kui Ren (Zhejiang University)

Read More

Encrypted DNS –> Privacy? A Traffic Analysis Perspective

Sandra Siby (EPFL), Marc Juarez (University of Southern California), Claudia Diaz (imec-COSIC KU Leuven), Narseo Vallina-Rodriguez (IMDEA Networks Institute), Carmela Troncoso (EPFL)

Read More

FlowPrint: Semi-Supervised Mobile-App Fingerprinting on Encrypted Network Traffic

Thijs van Ede (University of Twente), Riccardo Bortolameotti (Bitdefender), Andrea Continella (UC Santa Barbara), Jingjing Ren (Northeastern University), Daniel J. Dubois (Northeastern University), Martina Lindorfer (TU Wien), David Choffnes (Northeastern University), Maarten van Steen (University of Twente), Andreas Peter (University of Twente)

Read More

Poseidon: Mitigating Volumetric DDoS Attacks with Programmable Switches

Menghao Zhang (Tsinghua University), Guanyu Li (Tsinghua University), Shicheng Wang (Tsinghua University), Chang Liu (Tsinghua University), Ang Chen (Rice University), Hongxin Hu (Clemson University), Guofei Gu (Texas A&M University), Qi Li (Tsinghua University), Mingwei Xu (Tsinghua University), Jianping Wu (Tsinghua University)

Read More