Vasilios Mavroudis (University College London), Karl Wüst (ETH Zurich), Aritra Dhar (ETH Zurich), Kari Kostiainen (ETH Zurich), Srdjan Capkun (ETH Zurich)

Permissionless blockchains offer many advantages but also have significant limitations including high latency. This prevents their use in important scenarios such as retail payments, where merchants should approve payments fast. Prior works have attempted to mitigate this problem by moving transactions off the chain. However, such Layer-2 solutions have their own problems: payment channels require a separate deposit towards each merchant and thus significant locked-in funds from customers; payment hubs require very large operator deposits that depend on the number of customers; and side-chains require trusted validators.

In this paper, we propose Snappy, a novel solution that enables recipients, like merchants, to safely accept fast payments. In Snappy, all payments are on the chain, while small customer collaterals and moderate merchant collaterals act as payment guarantees. Besides receiving payments, merchants also act as statekeepers who collectively track and approve incoming payments using majority voting. In case of a double-spending attack, the victim merchant can recover lost funds either from the collateral of the malicious customer or a colluding statekeeper (merchant). Snappy overcomes the main problems of previous solutions: a single customer collateral can be used to shop with many merchants; merchant collaterals are independent of the number of customers; and validators do not have to be trusted. Our Ethereum prototype shows that safe, fast (<2 seconds) and cheap payments are possible on existing blockchains.

View More Papers

Prevalence and Impact of Low-Entropy Packing Schemes in the...

Alessandro Mantovani (EURECOM), Simone Aonzo (University of Genoa), Xabier Ugarte-Pedrero (Cisco Systems), Alessio Merlo (University of Genoa), Davide Balzarotti (EURECOM)

Read More

MassBrowser: Unblocking the Censored Web for the Masses, by...

Milad Nasr (University of Massachusetts Amherst), Hadi Zolfaghari (University of Massachusetts Amherst), Amir Houmansadr (University of Massachusetts Amherst), Amirhossein Ghafari (University of Massachusetts Amherst)

Read More

Unicorn: Runtime Provenance-Based Detector for Advanced Persistent Threats

Xueyuan Han (Harvard University), Thomas Pasquier (University of Bristol), Adam Bates (University of Illinois at Urbana-Champaign), James Mickens (Harvard University), Margo Seltzer (University of British Columbia)

Read More

Data-Driven Debugging for Functional Side Channels

Saeid Tizpaz-Niari (University of Colorado Boulder), Pavol Černý (TU Wien), Ashutosh Trivedi (University of Colorado Boulder)

Read More