Qiben Yan (Michigan State University), Kehai Liu (Chinese Academy of Sciences), Qin Zhou (University of Nebraska-Lincoln), Hanqing Guo (Michigan State University), Ning Zhang (Washington University in St. Louis)

With recent advances in artificial intelligence and natural language processing, voice has become a primary method for human-computer interaction, which has enabled game-changing new technologies in both commercial sector such as Siri, Alexa or Google Assistant and the military sector in voice-controlled naval warships. Recently, researchers have demonstrated that these voice assistant systems are susceptible to signal injection from voice commands at the inaudible frequency. To date, most of the existing work focus primarily on delivering a single command via line-of-sight ultrasound speaker and extending the range of this attack via speaker array. However, sound waves also propagate through other materials where vibration is possible. In this work, we aim to understand the characteristics of this new genre of attack in the context of different transmission media. Furthermore, by leveraging the unique properties of acoustic transmission in solid materials, we design a new attack called SurfingAttack that will allow multiple rounds of interactions with the voice-controlled device over a longer distance and without the need to be in line-of-sight, resulting in minimal change to the physical environment. This has greatly elevated the potential risk of inaudible sound attack, enabling many new attack scenarios, such as hijacking a mobile Short Message Service (SMS) passcode, making ghost fraud calls without owners' knowledge, etc. To accomplish SurfingAttack, we have solved several major challenges. First, the signal has been specially designed to allow omni-directional transmission for performing effective attacks over a solid medium. Second, the new attack enables two-way communication without alerting the legitimate user at the scene, which is challenging since the device is designed to interact with human in physical proximity rather than sensors. To mitigate this newly discovered threat, we also provide discussions and experimental results on potential countermeasures to defend against this new threat.

View More Papers

Poseidon: Mitigating Volumetric DDoS Attacks with Programmable Switches

Menghao Zhang (Tsinghua University), Guanyu Li (Tsinghua University), Shicheng Wang (Tsinghua University), Chang Liu (Tsinghua University), Ang Chen (Rice University), Hongxin Hu (Clemson University), Guofei Gu (Texas A&M University), Qi Li (Tsinghua University), Mingwei Xu (Tsinghua University), Jianping Wu (Tsinghua University)

Read More

When Match Fields Do Not Need to Match: Buffered...

Jiahao Cao (Tsinghua University; George Mason University), Renjie Xie (Tsinghua University), Kun Sun (George Mason University), Qi Li (Tsinghua University), Guofei Gu (Texas A&M University), Mingwei Xu (Tsinghua University)

Read More

HFL: Hybrid Fuzzing on the Linux Kernel

Kyungtae Kim (Purdue University), Dae R. Jeong (KAIST), Chung Hwan Kim (NEC Labs America), Yeongjin Jang (Oregon State University), Insik Shin (KAIST), Byoungyoung Lee (Seoul National University)

Read More

Melting Pot of Origins: Compromising the Intermediary Web Services...

Takuya Watanabe (NTT), Eitaro Shioji (NTT), Mitsuaki Akiyama (NTT), Tatsuya Mori (Waseda University, NICT, and RIKEN AIP)

Read More