Trevor Smith (Brigham Young University), Luke Dickenson (Brigham Young University), Kent Seamons (Brigham Young University)

Current revocation strategies have numerous issues that prevent their widespread adoption and use, including scalability, privacy, and new infrastructure requirements. Consequently, revocation is often ignored, leaving clients vulnerable to man-in-the-middle attacks.

This paper presents Let's Revoke, a scalable global revocation strategy that addresses the concerns of current revocation checking. Let's Revoke introduces a new unique identifier to each certificate that serves as an index to a dynamically-sized bit vector containing revocation status information. The bit vector approach enables significantly more efficient revocation checking for both clients and certificate authorities. We compare Let's Revoke to existing revocation schemes and show that it requires less storage and network bandwidth than other systems, including those that only cover a fraction of the global certificate space. We further demonstrate through simulations that Let's Revoke scales linearly up to ten billion certificates, even during mass revocation events.

View More Papers

BLAG: Improving the Accuracy of Blacklists

Sivaramakrishnan Ramanathan (University of Southern California/Information Sciences Institute), Jelena Mirkovic (University of Southern California/Information Sciences Institute), Minlan Yu (Harvard University)

Read More

Metal: A Metadata-Hiding File-Sharing System

Weikeng Chen (UC Berkeley), Raluca Ada Popa (UC Berkeley)

Read More

Metamorph: Injecting Inaudible Commands into Over-the-air Voice Controlled Systems

Tao Chen (City University of Hong Kong), Longfei Shangguan (Microsoft), Zhenjiang Li (City University of Hong Kong), Kyle Jamieson (Princeton University)

Read More

Measuring the Deployment of Network Censorship Filters at Global...

Ram Sundara Raman (University of Michigan), Adrian Stoll (University of Michigan), Jakub Dalek (Citizen Lab, University of Toronto), Reethika Ramesh (University of Michigan), Will Scott (Independent), Roya Ensafi (University of Michigan)

Read More