Trevor Smith (Brigham Young University), Luke Dickenson (Brigham Young University), Kent Seamons (Brigham Young University)

Current revocation strategies have numerous issues that prevent their widespread adoption and use, including scalability, privacy, and new infrastructure requirements. Consequently, revocation is often ignored, leaving clients vulnerable to man-in-the-middle attacks.

This paper presents Let's Revoke, a scalable global revocation strategy that addresses the concerns of current revocation checking. Let's Revoke introduces a new unique identifier to each certificate that serves as an index to a dynamically-sized bit vector containing revocation status information. The bit vector approach enables significantly more efficient revocation checking for both clients and certificate authorities. We compare Let's Revoke to existing revocation schemes and show that it requires less storage and network bandwidth than other systems, including those that only cover a fraction of the global certificate space. We further demonstrate through simulations that Let's Revoke scales linearly up to ten billion certificates, even during mass revocation events.

View More Papers

Not All Coverage Measurements Are Equal: Fuzzing by Coverage...

Yanhao Wang (Institute of Software, Chinese Academy of Sciences), Xiangkun Jia (Pennsylvania State University), Yuwei Liu (Institute of Software, Chinese Academy of Sciences), Kyle Zeng (Arizona State University), Tiffany Bao (Arizona State University), Dinghao Wu (Pennsylvania State University), Purui Su (Institute of Software, Chinese Academy of Sciences)

Read More

DefRec: Establishing Physical Function Virtualization to Disrupt Reconnaissance of...

Hui Lin (University of Nevada, Reno), Jianing Zhuang (University of Nevada, Reno), Yih-Chun Hu (University of Illinois, Urbana-Champaign), Huayu Zhou (University of Nevada, Reno)

Read More

Detecting Probe-resistant Proxies

Sergey Frolov (University of Colorado Boulder), Jack Wampler (University of Colorado Boulder), Eric Wustrow (University of Colorado Boulder)

Read More

UIScope: Accurate, Instrumentation-free, and Visible Attack Investigation for GUI...

Runqing Yang (Zhejiang University), Shiqing Ma (Rutgers University), Haitao Xu (Arizona State University), Xiangyu Zhang (Purdue University), Yan Chen (Northwestern University)

Read More