Rahmadi Trimananda (University of California, Irvine), Janus Varmarken (University of California, Irvine), Athina Markopoulou (University of California, Irvine), Brian Demsky (University of California, Irvine)

Smart home devices are vulnerable to passive inference attacks based on network traffic, even in the presence of encryption. In this paper, we present PINGPONG, a tool that can automatically extract packet-level signatures for device events (e.g., light bulb turning ON/OFF) from network traffic. We evaluated PINGPONG on popular smart home devices ranging from smart plugs and thermostats to cameras, voice-activated devices, and smart TVs. We were able to: (1) automatically extract previously unknown signatures that consist of simple sequences of packet lengths and directions; (2) use those signatures to detect the devices or specific events with an average recall of more than 97%; (3) show that the signatures are unique among hundreds of millions of packets of real world network traffic; (4) show that our methodology is also applicable to publicly available datasets; and (5) demonstrate its robustness in different settings: events triggered by local and remote smartphones, as well as by home automation systems.

View More Papers

OcuLock: Exploring Human Visual System for Authentication in Virtual...

Shiqing Luo (Georgia State University), Anh Nguyen (Georgia State University), Chen Song (San Diego State University), Feng Lin (Zhejiang University), Wenyao Xu (SUNY Buffalo), Zhisheng Yan (Georgia State University)

Read More

Are You Going to Answer That? Measuring User Responses...

Imani N. Sherman (University of Florida), Jasmine D. Bowers (University of Florida), Keith McNamara Jr. (University of Florida), Juan E. Gilbert (University of Florida), Jaime Ruiz (University of Florida), Patrick Traynor (University of Florida)

Read More

BLAZE: Blazing Fast Privacy-Preserving Machine Learning

Arpita Patra (Indian Institute of Science, Bangalore), Ajith Suresh (Indian Institute of Science, Bangalore)

Read More

TKPERM: Cross-platform Permission Knowledge Transfer to Detect Overprivileged Third-party...

Faysal Hossain Shezan (University of Virginia), Kaiming Cheng (University of Virginia), Zhen Zhang (Johns Hopkins University), Yinzhi Cao (Johns Hopkins University), Yuan Tian (University of Virginia)

Read More