Tianhao Wang (Purdue University), Milan Lopuhaä-Zwakenberg (Eindhoven University of Technology), Zitao Li (Purdue University), Boris Skoric (Eindhoven University of Technology), Ninghui Li (Purdue University)

Local Differential Privacy (LDP) protects user privacy from the data collector. LDP protocols have been increasingly deployed in the industry. A basic building block is frequency oracle (FO) protocols, which estimate frequencies of values. While several FO protocols have been proposed, the design goal does not lead to optimal results for answering many queries. In this paper, we show that adding post-processing steps to FO protocols by exploiting the knowledge that all individual frequencies should be non-negative and they sum up to one can lead to significantly better accuracy for a wide range of tasks, including frequencies of individual values, frequencies of the most frequent values, and frequencies of subsets of values. We consider 10 different methods that exploit this knowledge differently. We establish theoretical relationships between some of them and conducted extensive experimental evaluations to understand which methods should be used for different query tasks.

View More Papers

ProtectIOn: Root-of-Trust for IO in Compromised Platforms

Aritra Dhar (ETH Zurich), Enis Ulqinaku (ETH Zurich), Kari Kostiainen (ETH Zurich), Srdjan Capkun (ETH Zurich)

Read More

Metal: A Metadata-Hiding File-Sharing System

Weikeng Chen (UC Berkeley), Raluca Ada Popa (UC Berkeley)

Read More

Secure Sublinear Time Differentially Private Median Computation

Jonas Böhler (SAP Security Research), Florian Kerschbaum (University of Waterloo)

Read More

Precisely Characterizing Security Impact in a Flood of Patches...

Qiushi Wu (University of Minnesota), Yang He (University of Minnesota), Stephen McCamant (University of Minnesota), Kangjie Lu (University of Minnesota)

Read More