Tao Wang (Hong Kong University of Science and Technology)

Tor is an anonymity network that allows clients to browse web pages privately, but loading web pages with Tor is slow. To analyze how the browser loads web pages, we examine their resource trees using our new browser logging and simulation tool, BLAST. We find that the time it takes to load a web page with Tor is almost entirely determined by the number of round trips incurred, not its bandwidth, and Tor Browser incurs unnecessary round trips. Resources sit in the browser queue excessively waiting for the TCP, TLS or ALPN handshakes, each of which takes a separate round trip. We show that increasing resource loading capacity with larger pipelines and even HTTP/2 do not decrease load time because they do not save round trips.

We set out to minimize round trips with a number of protocol and browser improvements, including TCP Fast Open, optimistic data, zero-RTT TLS. We also recommend the use of databases to assist the client with redirection, identifying HTTP/2 servers, and prefetching. All of these features are designed to cut down on the number of round trips incurred in loading web pages. To evaluate these proposed improvements, we create a simulation tool and validate that it is highly accurate in predicting mean page load times. We use the simulator to analyze these features and it predicts that they will decrease the mean page load time by 61% in total over HTTP/2. Our large improvement to user experience comes at trivial cost to the Tor network.

View More Papers

On Using Application-Layer Middlebox Protocols for Peeking Behind NAT...

Teemu Rytilahti (Ruhr University Bochum), Thorsten Holz (Ruhr University Bochum)

Read More

Deceptive Previews: A Study of the Link Preview Trustworthiness...

Giada Stivala (CISPA Helmholtz Center for Information Security), Giancarlo Pellegrino (CISPA Helmholtz Center for Information Security)

Read More

Secure Sublinear Time Differentially Private Median Computation

Jonas Böhler (SAP Security Research), Florian Kerschbaum (University of Waterloo)

Read More

CloudLeak: Large-Scale Deep Learning Models Stealing Through Adversarial Examples

Honggang Yu (University of Florida), Kaichen Yang (University of Florida), Teng Zhang (University of Central Florida), Yun-Yun Tsai (National Tsing Hua University), Tsung-Yi Ho (National Tsing Hua University), Yier Jin (University of Florida)

Read More