Avinash Sudhodanan (IMDEA Software Institute), Soheil Khodayari (CISPA Helmholtz Center for Information Security), Juan Caballero (IMDEA Software Institute)

In a Cross-Origin State Inference (COSI) attack, an attacker convinces a victim into visiting an attack web page, which leverages the cross-origin interaction features of the victim’s web browser to infer the victim’s state at a target web site. Multiple instances of COSI attacks have been found in the past under different names such as login detection or access detection attacks. But, those attacks only consider two states (e.g., logged in or not) and focus on a specific browser leak method (or XS-Leak).

This work shows that mounting more complex COSI attacks such as deanonymizing the owner of an account, determining if the victim owns sensitive content, and determining the victim’s account type often requires considering more than two states. Furthermore, robust attacks require supporting a variety of browsers since the victim’s browser cannot be predicted apriori. To address these issues, we present a novel approach to identify and build complex COSI attacks that differentiate more than
two states and support multiple browsers by combining multiple attack vectors, possibly using different XS-Leaks. To enable our approach, we introduce the concept of a COSI attack class. We propose two novel techniques to generalize existing COSI attack instances into COSI attack classes and to discover new COSI attack classes. We systematically study existing attacks and apply our techniques to them, identifying 40 COSI attack classes. As part of this process, we discover a novel XS-Leak based on window.postMessage. We implement our approach into Basta-COSI, a tool to find COSI attacks in a target web site. We apply Basta-COSI to test four stand-alone web applications and 58 popular web sites, finding COSI attacks against each of them.

View More Papers

Strong Authentication without Temper-Resistant Hardware and Application to Federated...

Zhenfeng Zhang (Chinese Academy of Sciences, University of Chinese Academy of Sciences, and The Joint Academy of Blockchain Innovation), Yuchen Wang (Chinese Academy of Sciences and University of Chinese Academy of Sciences), Kang Yang (State Key Laboratory of Cryptology)

Read More

Metamorph: Injecting Inaudible Commands into Over-the-air Voice Controlled Systems

Tao Chen (City University of Hong Kong), Longfei Shangguan (Microsoft), Zhenjiang Li (City University of Hong Kong), Kyle Jamieson (Princeton University)

Read More

HotFuzz: Discovering Algorithmic Denial-of-Service Vulnerabilities Through Guided Micro-Fuzzing

William Blair (Boston University), Andrea Mambretti (Northeastern University), Sajjad Arshad (Northeastern University), Michael Weissbacher (Northeastern University), William Robertson (Northeastern University), Engin Kirda (Northeastern University), Manuel Egele (Boston University)

Read More

ProtectIOn: Root-of-Trust for IO in Compromised Platforms

Aritra Dhar (ETH Zurich), Enis Ulqinaku (ETH Zurich), Kari Kostiainen (ETH Zurich), Srdjan Capkun (ETH Zurich)

Read More