Faysal Hossain Shezan (University of Virginia), Kaiming Cheng (University of Virginia), Zhen Zhang (Johns Hopkins University), Yinzhi Cao (Johns Hopkins University), Yuan Tian (University of Virginia)

Permission-based access control enables users to manage and control their sensitive data for third-party applications. In an ideal scenario, third-party application includes enough details to illustrate the usage of such data, while the reality is that many descriptions of third-party applications are vague about their security or privacy activities. As a result, users are left with insufficient details when granting sensitive data to these applications.

Prior works, such as WHYPER and AutoCog, have addressed the aforementioned problem via a so-called permission correlation system. Such a system correlates third-party applications' description with their requested permissions and determines an application as overprivileged if a mismatch is found. However, although prior works are successful on their own platforms, such as Android eco-system, they are not directly applicable to new platforms, such as Chrome extensions and IFTTT, without extensive data labeling and parameter tuning.

In this paper, we design, implement, and evaluate a novel system, called TKPERM, which transfers knowledges of permission correlation systems across platforms. Our key idea is that these varied platforms with different use cases---like smartphones, IoTs, and desktop browsers---are all user-facing and thus allow the knowledges to be transferrable across platforms. Particularly, we adopt a greedy selection algorithm that picks the best source domains to transfer to the target permission on a new platform.

TKPERM achieves 90.02% overall F1 score after transfer, which is 12.62% higher than the one of a model trained directly on the target domain without transfer. Particularly, TKPERM has 91.83% F1 score on IFTTT, 89.13% F1 score on Chrome-Extension, and 89.1% F1 score on SmartThings. TKPERM also successfully identified many real-world overprivileged applications, such as a gaming hub requesting location permissions without legitimate use.

View More Papers

Genotype Extraction and False Relative Attacks: Security Risks to...

Peter Ney (University of Washington), Luis Ceze (University of Washington), Tadayoshi Kohno (University of Washington)

Read More

Detecting Probe-resistant Proxies

Sergey Frolov (University of Colorado Boulder), Jack Wampler (University of Colorado Boulder), Eric Wustrow (University of Colorado Boulder)

Read More

CDN Judo: Breaking the CDN DoS Protection with Itself

Run Guo (Tsinghua University), Weizhong Li (Tsinghua University), Baojun Liu (Tsinghua University), Shuang Hao (University of Texas at Dallas), Jia Zhang (Tsinghua University), Haixin Duan (Tsinghua University), Kaiwen Sheng (Tsinghua University), Jianjun Chen (ICSI), Ying Liu (Tsinghua University)

Read More

A Practical Approach for Taking Down Avalanche Botnets Under...

Victor Le Pochat (imec-DistriNet, KU Leuven), Tim Van hamme (imec-DistriNet, KU Leuven), Sourena Maroofi (Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG), Tom Van Goethem (imec-DistriNet, KU Leuven), Davy Preuveneers (imec-DistriNet, KU Leuven), Andrzej Duda (Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG), Wouter Joosen (imec-DistriNet, KU Leuven), Maciej Korczyński (Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG)

Read More