Alessandro Mantovani (EURECOM), Simone Aonzo (University of Genoa), Xabier Ugarte-Pedrero (Cisco Systems), Alessio Merlo (University of Genoa), Davide Balzarotti (EURECOM)

An open research problem on malware analysis is how to statically distinguish between packed and non-packed executables. This has an impact on antivirus software and malware analysis systems, which may need to apply different heuristics or to resort to more costly code emulation solutions to deal with the presence of potential packing routines. It can also affect the results of many research studies in which the authors adopt algorithms that are specifically designed for packed or non-packed binaries.

Therefore, a wrong answer to the question emph{``is this executable packed?''} can make the difference between malware evasion and detection. It has long been known that packing and entropy are strongly correlated, often leading to the wrong assumption that a low entropy score implies that an executable is NOT packed. Exceptions to this rule exist, but they have always been considered as one-off cases, with a negligible impact on any large scale experiment. However, if such assumption might have been acceptable in the past, our experiments show that this is not the case anymore as an increasing and remarkable number of packed malware samples implement proper schemes to keep their entropy low. In this paper, we empirically investigate and measure this problem by analyzing a dataset of 50K low-entropy Windows malware samples.

Our tests show that, despite all samples have a low entropy value, over 30% of them adopt some form of runtime packing. We then extended our analysis beyond the pure entropy, by considering all static features that have been proposed so far to identify packed code. Again, our tests show that even a state of the art machine learning classifier is unable to conclude whether a low-entropy sample is packed or not by relying only on features extracted with static analysis.

View More Papers

Custos: Practical Tamper-Evident Auditing of Operating Systems Using Trusted...

Riccardo Paccagnella (University of Illinois at Urbana–Champaign), Pubali Datta (University of Illinois at Urbana–Champaign), Wajih Ul Hassan (University of Illinois at Urbana–Champaign), Adam Bates (University of Illinois at Urbana–Champaign), Christopher W. Fletcher (University of Illinois at Urbana–Champaign), Andrew Miller (University of Illinois at Urbana–Champaign), Dave Tian (Purdue University)

Read More

Data-Driven Debugging for Functional Side Channels

Saeid Tizpaz-Niari (University of Colorado Boulder), Pavol Černý (TU Wien), Ashutosh Trivedi (University of Colorado Boulder)

Read More

On the Resilience of Biometric Authentication Systems against Random...

Benjamin Zi Hao Zhao (University of New South Wales and Data61 CSIRO), Hassan Jameel Asghar (Macquarie University and Data61 CSIRO), Mohamed Ali Kaafar (Macquarie University and Data61 CSIRO)

Read More

Towards Plausible Graph Anonymization

Yang Zhang (CISPA Helmholtz Center for Information Security), Mathias Humbert (armasuisse Science and Technology), Bartlomiej Surma (CISPA Helmholtz Center for Information Security), Praveen Manoharan (CISPA Helmholtz Center for Information Security), Jilles Vreeken (CISPA Helmholtz Center for Information Security), Michael Backes (CISPA Helmholtz Center for Information Security)

Read More