Alessandro Mantovani (EURECOM), Simone Aonzo (University of Genoa), Xabier Ugarte-Pedrero (Cisco Systems), Alessio Merlo (University of Genoa), Davide Balzarotti (EURECOM)

An open research problem on malware analysis is how to statically distinguish between packed and non-packed executables. This has an impact on antivirus software and malware analysis systems, which may need to apply different heuristics or to resort to more costly code emulation solutions to deal with the presence of potential packing routines. It can also affect the results of many research studies in which the authors adopt algorithms that are specifically designed for packed or non-packed binaries.

Therefore, a wrong answer to the question emph{``is this executable packed?''} can make the difference between malware evasion and detection. It has long been known that packing and entropy are strongly correlated, often leading to the wrong assumption that a low entropy score implies that an executable is NOT packed. Exceptions to this rule exist, but they have always been considered as one-off cases, with a negligible impact on any large scale experiment. However, if such assumption might have been acceptable in the past, our experiments show that this is not the case anymore as an increasing and remarkable number of packed malware samples implement proper schemes to keep their entropy low. In this paper, we empirically investigate and measure this problem by analyzing a dataset of 50K low-entropy Windows malware samples.

Our tests show that, despite all samples have a low entropy value, over 30% of them adopt some form of runtime packing. We then extended our analysis beyond the pure entropy, by considering all static features that have been proposed so far to identify packed code. Again, our tests show that even a state of the art machine learning classifier is unable to conclude whether a low-entropy sample is packed or not by relying only on features extracted with static analysis.

View More Papers

Locally Differentially Private Frequency Estimation with Consistency

Tianhao Wang (Purdue University), Milan Lopuhaä-Zwakenberg (Eindhoven University of Technology), Zitao Li (Purdue University), Boris Skoric (Eindhoven University of Technology), Ninghui Li (Purdue University)

Read More

SVLAN: Secure & Scalable Network Virtualization

Jonghoon Kwon (ETH), Taeho Lee (ETH), Claude Hähni (ETH), Adrian Perrig (ETH)

Read More

Data-Driven Debugging for Functional Side Channels

Saeid Tizpaz-Niari (University of Colorado Boulder), Pavol Černý (TU Wien), Ashutosh Trivedi (University of Colorado Boulder)

Read More

When Match Fields Do Not Need to Match: Buffered...

Jiahao Cao (Tsinghua University; George Mason University), Renjie Xie (Tsinghua University), Kun Sun (George Mason University), Qi Li (Tsinghua University), Guofei Gu (Texas A&M University), Mingwei Xu (Tsinghua University)

Read More