Ren Ding (Georgia Institute of Technology), Hong Hu (Georgia Institute of Technology), Wen Xu (Georgia Institute of Technology), Taesoo Kim (Georgia Institute of Technology)

Software vendors collect crash reports from end-users to assist debugging and testing of their products. However, crash reports may contain user’s private information, like names and passwords, rendering users hesitated to share the crash report with developers. We need a mechanism to protect user’s privacy from crash reports on the client-side, and meanwhile, keep sufficient information to support server-side debugging.

In this paper, we propose the DESENSITIZATION technique that generates privacy-aware and attack-preserving crash reports from crashed processes. Our tool uses lightweight methods to identify bug- and attack-related data from the memory, and removes other data to protect user’s privacy. Since the desensitized memory has more null bytes, we store crash reports in spare files to save the network bandwidth and the server-side storage. We prototype DESENSITIZATION and apply it to a large number of crashes from several real-world programs, like browser and JavaScript engine. The result shows that our DESENSITIZATION technique can eliminate 80.9% of non-zero bytes from coredumps, and 49.0% from minidumps. The desensitized crash report can be 50.5% smaller than the original size, which significantly saves resources for report submission and storage. Our DESENSITIZATION technique is a push-button solution for the privacy-aware crash report.

View More Papers

Revisiting Leakage Abuse Attacks

Laura Blackstone (Brown University), Seny Kamara (Brown University), Tarik Moataz (Brown University)

Read More

Carnus: Exploring the Privacy Threats of Browser Extension Fingerprinting

Soroush Karami (University of Illinois at Chicago), Panagiotis Ilia (University of Illinois at Chicago), Konstantinos Solomos (University of Illinois at Chicago), Jason Polakis (University of Illinois at Chicago)

Read More

Practical Traffic Analysis Attacks on Secure Messaging Applications

Alireza Bahramali (University of Massachusetts Amherst), Amir Houmansadr (University of Massachusetts Amherst), Ramin Soltani (University of Massachusetts Amherst), Dennis Goeckel (University of Massachusetts Amherst), Don Towsley (University of Massachusetts Amherst)

Read More

Prevalence and Impact of Low-Entropy Packing Schemes in the...

Alessandro Mantovani (EURECOM), Simone Aonzo (University of Genoa), Xabier Ugarte-Pedrero (Cisco Systems), Alessio Merlo (University of Genoa), Davide Balzarotti (EURECOM)

Read More