Hyun Bin Lee (University of Illinois at Urbana-Champaign), Tushar M. Jois (Johns Hopkins University), Christopher W. Fletcher (University of Illinois at Urbana-Champaign), Carl A. Gunter (University of Illinois at Urbana-Champaign)

Users can improve the security of remote communications by using Trusted Execution Environments (TEEs) to protect against direct introspection and tampering of sensitive data. This can even be done with applications coded in high-level languages with complex programming stacks such as R, Python, and Ruby. However, this creates a trade-off between programming convenience versus the risk of attacks using microarchitectural side channels.

In this paper, we argue that it is possible to address this problem for important applications by instrumenting a complex programming environment (like R) to produce a Data-Oblivious Transcript (DOT) that is explicitly designed to support computation that excludes side channels. Such a transcript is then evaluated on a Trusted Execution Environment (TEE) containing the sensitive data using a small trusted computing base called the Data-Oblivious Virtual Environment (DOVE).

To motivate the problem, we demonstrate a number of subtle side-channel vulnerabilities in the R language. We then provide an illustrative design and implementation of DOVE for R, creating the first side-channel resistant R programming stack. We demonstrate that the two-phase architecture provided by DOT generation and DOVE evaluation can provide practical support for complex programming languages with usable performance and high security assurances against side channels.

View More Papers

Preventing and Detecting State Inference Attacks on Android

Andrea Possemato (IDEMIA and EURECOM), Dario Nisi (EURECOM), Yanick Fratantonio (EURECOM and Cisco Talos)

Read More

Demo #10: Security of Deep Learning based Automated Lane...

Takami Sato, Junjie Shen, Ningfei Wang (UC Irvine), Yunhan Jia (ByteDance), Xue Lin (Northeastern University), and Qi Alfred Chen (UC Irvine)

Read More

Practical Non-Interactive Searchable Encryption with Forward and Backward Privacy

Shi-Feng Sun (Monash University, Australia), Ron Steinfeld (Monash University, Australia), Shangqi Lai (Monash University, Australia), Xingliang Yuan (Monash University, Australia), Amin Sakzad (Monash University, Australia), Joseph Liu (Monash University, Australia), ‪Surya Nepal‬ (Data61, CSIRO, Australia), Dawu Gu (Shanghai Jiao Tong University, China)

Read More

Forward and Backward Private Conjunctive Searchable Symmetric Encryption

Sikhar Patranabis (ETH Zurich), Debdeep Mukhopadhyay (IIT Kharagpur)

Read More