Yonghwi Kwon (University of Virginia), Weihang Wang (University at Buffalo, SUNY), Jinho Jung (Georgia Institute of Technology), Kyu Hyung Lee (University of Georgia), Roberto Perdisci (Georgia Institute of Technology and University of Georgia)

Cybercrime scene reconstruction that aims to reconstruct a previous execution of the cyber attack delivery process is an important capability for cyber forensics (e.g., post mortem analysis of the cyber attack executions). Unfortunately, existing techniques such as log-based forensics or record-and-replay techniques are not suitable to handle complex and long-running modern applications for cybercrime scene reconstruction and post mortem forensic analysis. Specifically, log-based cyber forensics techniques often suffer from a lack of inspection capability and do not provide details of how the attack unfolded. Record-and-replay techniques impose significant runtime overhead, often require significant modifications on end-user systems, and demand to replay the entire recorded execution from the beginning. In this paper, we propose C^2SR, a novel technique that can reconstruct an attack delivery chain (i.e., cybercrime scene) for post-mortem forensic analysis. It provides a highly desired capability: interactable partial execution reconstruction. In particular, it reproduces a partial execution of interest from a large execution trace of a long-running program. The reconstructed execution is also interactable, allowing forensic analysts to leverage debugging and analysis tools that did not exist on the recorded machine. The key intuition behind C^2SR is partitioning an execution trace by resources and reproducing resource accesses that are consistent with the original execution. It tolerates user interactions required for inspections that do not cause inconsistent resource accesses. Our evaluation results on 26 real-world programs show that C^2SR has low runtime overhead (less than 5.47%) and acceptable space overhead. We also demonstrate with four realistic attack scenarios that C^2SR successfully reconstructs partial executions of long-running applications such as web browsers, and it can remarkably reduce the user's efforts to understand the incident.

View More Papers

All the Numbers are US: Large-scale Abuse of Contact...

Christoph Hagen (University of Würzburg), Christian Weinert (TU Darmstadt), Christoph Sendner (University of Würzburg), Alexandra Dmitrienko (University of Würzburg), Thomas Schneider (TU Darmstadt)

Read More

HTTPS-Only: Upgrading all connections to https: in Web Browsers

Christoph Kerschbaumer, Julian Gaibler, Arthur Edelstein (Mozilla Corporation), Thyla van der Merwey (ETH Zurich)

Read More

Is Your Firmware Real or Re-Hosted? A case study...

Abraham A. Clements, Logan Carpenter, William A. Moeglein (Sandia National Laboratories), Christopher Wright (Purdue University)

Read More

LaKSA: A Probabilistic Proof-of-Stake Protocol

Daniel Reijsbergen (Singapore University of Technology and Design), Pawel Szalachowski (Singapore University of Technology and Design), Junming Ke (University of Tartu), Zengpeng Li (Singapore University of Technology and Design), Jianying Zhou (Singapore University of Technology and Design)

Read More