Hyungsub Kim (Purdue University), Muslum Ozgur Ozmen (Purdue University), Antonio Bianchi (Purdue University), Z. Berkay Celik (Purdue University), Dongyan Xu (Purdue University)

Robotic vehicles (RVs) are becoming essential tools of modern systems, including autonomous delivery services, public transportation, and environment monitoring. Despite their diverse deployment, safety and security issues with RVs limit their wide adoption. Most attempts to date in RV security aim to propose defenses that harden their control program against syntactic bugs, input validation bugs, and external sensor spoofing attacks. In this paper, we introduce PGFUZZ, a policy-guided fuzzing framework, which validates whether an RV adheres to identified safety and functional policies that cover user commands, configuration parameters, and physical states. PGFUZZ expresses desired policies through temporal logic formulas with time constraints as a guide to fuzz the analyzed system. Specifically, it generates fuzzing inputs that minimize a distance metric measuring ``how close'' the RV current state is to a policy violation. In addition, it uses static and dynamic analysis to focus the fuzzing effort only on those commands, parameters, and environmental factors that influence the ``truth value'' of any of the exercised policies. The combination of these two techniques allows PGFUZZ to increase the efficiency of the fuzzing process significantly. We validate PGFUZZ on three RV control programs, ArduPilot, PX4, and Paparazzi, with 56 unique policies. PGFUZZ discovered 156 previously unknown bugs, 106 of which have been acknowledged by their developers.

View More Papers

Model-Agnostic Defense for Lane Detection against Adversarial Attack

Henry Xu, An Ju, and David Wagner (UC Berkeley) Baidu Security Auto-Driving Security Award Winner ($1000 cash prize)!

Read More

WINNIE : Fuzzing Windows Applications with Harness Synthesis and...

Jinho Jung (Georgia Institute of Technology), Stephen Tong (Georgia Institute of Technology), Hong Hu (Pennsylvania State University), Jungwon Lim (Georgia Institute of Technology), Yonghwi Jin (Georgia Institute of Technology), Taesoo Kim (Georgia Institute of Technology)

Read More

Experimental Evaluation of a Binary-level Symbolic Analyzer for Spectre:...

Lesly-Ann Daniel (CEA List), Sébastien Bardin (CEA List, Université Paris-Saclay), Tamara Rezk (INRIA)

Read More