Philipp Schindler (SBA Research), Aljosha Judmayer (SBA Research), Markus Hittmeir (SBA Research), Nicholas Stifter (SBA Research, TU Wien), Edgar Weippl (Universität Wien)

Generating randomness collectively has been a long standing problem in distributed computing. It plays a critical role not only in the design of state-of-the-art Byzantine fault-tolerant (BFT) and blockchain protocols, but also for a range of applications far beyond this field. We present RandRunner, a random beacon protocol with a unique set of guarantees that targets a realistic system model. Our design avoids the necessity of a (BFT) consensus protocol and its accompanying high complexity and communication overhead. We achieve this by introducing a novel extension to verifiable delay functions (VDFs) in the RSA setting that does not require a trusted dealer or distributed key generation (DKG) and only relies on well studied cryptographic assumptions. This design allows RandRunner to tolerate adversarial or failed leaders while guaranteeing safety and liveness of the protocol despite possible periods of asynchrony.

View More Papers

Bitcontracts: Supporting Smart Contracts in Legacy Blockchains

Karl Wüst (ETH Zurich), Loris Diana (ETH Zurich), Kari Kostiainen (ETH Zurich), Ghassan Karame (NEC Labs), Sinisa Matetic (ETH Zurich), Srdjan Capkun (ETH Zurich)

Read More

Forward and Backward Private Conjunctive Searchable Symmetric Encryption

Sikhar Patranabis (ETH Zurich), Debdeep Mukhopadhyay (IIT Kharagpur)

Read More

Shadow Attacks: Hiding and Replacing Content in Signed PDFs

Christian Mainka (Ruhr University Bochum), Vladislav Mladenov (Ruhr University Bochum), Simon Rohlmann (Ruhr University Bochum)

Read More