Philipp Schindler (SBA Research), Aljosha Judmayer (SBA Research), Markus Hittmeir (SBA Research), Nicholas Stifter (SBA Research, TU Wien), Edgar Weippl (Universität Wien)

Generating randomness collectively has been a long standing problem in distributed computing. It plays a critical role not only in the design of state-of-the-art Byzantine fault-tolerant (BFT) and blockchain protocols, but also for a range of applications far beyond this field. We present RandRunner, a random beacon protocol with a unique set of guarantees that targets a realistic system model. Our design avoids the necessity of a (BFT) consensus protocol and its accompanying high complexity and communication overhead. We achieve this by introducing a novel extension to verifiable delay functions (VDFs) in the RSA setting that does not require a trusted dealer or distributed key generation (DKG) and only relies on well studied cryptographic assumptions. This design allows RandRunner to tolerate adversarial or failed leaders while guaranteeing safety and liveness of the protocol despite possible periods of asynchrony.

View More Papers

Reinforcement Learning-based Hierarchical Seed Scheduling for Greybox Fuzzing

Jinghan Wang (University of California, Riverside), Chengyu Song (University of California, Riverside), Heng Yin (University of California, Riverside)

Read More

Experimental Evaluation of a Binary-level Symbolic Analyzer for Spectre:...

Lesly-Ann Daniel (CEA List), Sébastien Bardin (CEA List, Université Paris-Saclay), Tamara Rezk (INRIA)

Read More

NetPlier: Probabilistic Network Protocol Reverse Engineering from Message Traces

Yapeng Ye (Purdue University), Zhuo Zhang (Purdue University), Fei Wang (Purdue University), Xiangyu Zhang (Purdue University), Dongyan Xu (Purdue University)

Read More

Awakening the Web's Sleeper Agents: Misusing Service Workers for...

Soroush Karami (University of Illinois at Chicago), Panagiotis Ilia (University of Illinois at Chicago), Jason Polakis (University of Illinois at Chicago)

Read More