Sinem Sav (EPFL), Apostolos Pyrgelis (EPFL), Juan Ramón Troncoso-Pastoriza (EPFL), David Froelicher (EPFL), Jean-Philippe Bossuat (EPFL), Joao Sa Sousa (EPFL), Jean-Pierre Hubaux (EPFL)

In this paper, we address the problem of privacy-preserving training and evaluation of neural networks in an $N$-party, federated learning setting. We propose a novel system, POSEIDON, the first of its kind in the regime of privacy-preserving neural network training. It employs multiparty lattice-based cryptography to preserve the confidentiality of the training data, the model, and the evaluation data, under a passive-adversary model and collusions between up to $N-1$ parties. To efficiently execute the secure backpropagation algorithm for training neural networks, we provide a generic packing approach that enables Single Instruction, Multiple Data (SIMD) operations on encrypted data. We also introduce arbitrary linear transformations within the cryptographic bootstrapping operation, optimizing the costly cryptographic computations over the parties, and we define a constrained optimization problem for choosing the cryptographic parameters. Our experimental results show that POSEIDON achieves accuracy similar to centralized or decentralized non-private approaches and that its computation and communication overhead scales linearly with the number of parties. POSEIDON trains a 3-layer neural network on the MNIST dataset with 784 features and 60K samples distributed among 10 parties in less than 2 hours.

View More Papers

Deceptive Deletions for Protecting Withdrawn Posts on Social Media...

Mohsen Minaei (Visa Research), S Chandra Mouli (Purdue University), Mainack Mondal (IIT Kharagpur), Bruno Ribeiro (Purdue University), Aniket Kate (Purdue University)

Read More

Hey Alexa, is this Skill Safe?: Taking a Closer...

Christopher Lentzsch (Ruhr-Universität Bochum), Sheel Jayesh Shah (North Carolina State University), Benjamin Andow (Google), Martin Degeling (Ruhr-Universität Bochum), Anupam Das (North Carolina State University), William Enck (North Carolina State University)

Read More

Obfuscated Access and Search Patterns in Searchable Encryption

Zhiwei Shang (University of Waterloo), Simon Oya (University of Waterloo), Andreas Peter (University of Twente), Florian Kerschbaum (University of Waterloo)

Read More

Demo #7: Automated Tracking System For LiDAR Spoofing Attacks...

Yulong Cao, Jiaxiang Ma, Kevin Fu (University of Michigan), Sara Rampazzi (University of Florida), and Z. Morley Mao (University of Michigan) Best Demo Award Runner-up ($200 cash prize)!

Read More