Shi-Feng Sun (Monash University, Australia), Ron Steinfeld (Monash University, Australia), Shangqi Lai (Monash University, Australia), Xingliang Yuan (Monash University, Australia), Amin Sakzad (Monash University, Australia), Joseph Liu (Monash University, Australia), ‪Surya Nepal‬ (Data61, CSIRO, Australia), Dawu Gu (Shanghai Jiao Tong University, China)

In Dynamic Symmetric Searchable Encryption (DSSE), forward privacy ensures that previous search queries cannot be associated with future updates, while backward privacy guarantees that subsequent search queries cannot be associated with deleted documents in the past. In this work, we propose a generic forward and backward-private DSSE scheme, which is, to the best of our knowledge, the first practical and non-interactive Type-II backward-private DSSE scheme not relying on trusted execution environments. To this end, we first introduce a new cryptographic primitive, named Symmetric Revocable Encryption (SRE), and propose a modular construction from some succinct cryptographic primitives. Then we present our DSSE scheme based on the proposed SRE, and instantiate it with lightweight symmetric primitives. At last, we implement our scheme and
compare it with the most efficient Type-II backward-private scheme to date (Demertzis et al., NDSS 2020). In a typical network environment, our result shows that the search in our scheme outperforms it by 2-11x under the same security notion.

View More Papers

Demo #4: Attacking Tesla Model X’s Autopilot Using Compromised...

Ben Nassi (Ben-Gurion University of the Negev), Yisroel Mirsky (Ben-Gurion University of the Negev, Georgia Tech), Dudi Nassi, Raz Ben Netanel (Ben-Gurion University of the Negev), Oleg Drokin (Independent Researcher), and Yuval Elovici (Ben-Gurion University of the Negev) Best Demo Award Winner ($300 cash prize)!

Read More

Comparative Analysis of the DoT with HTTPS Certificate Ecosystems

Ali Sadeghi Jahromi, AbdelRahman Abdou (Carleton University)

Read More

TASE: Reducing Latency of Symbolic Execution with Transactional Memory

Adam Humphries (University of North Carolina), Kartik Cating-Subramanian (University of Colorado), Michael K. Reiter (Duke University)

Read More