Daniel Reijsbergen (Singapore University of Technology and Design), Pawel Szalachowski (Singapore University of Technology and Design), Junming Ke (University of Tartu), Zengpeng Li (Singapore University of Technology and Design), Jianying Zhou (Singapore University of Technology and Design)

We present Large-scale Known-committee Stake-based Agreement (LaKSA), a chain-based Proof-of-Stake protocol that is dedicated, but not limited, to cryptocurrencies. LaKSA minimizes interactions between nodes through lightweight committee voting, resulting in a simpler, more robust, and more scalable proposal than competing systems. It also mitigates other drawbacks of previous systems, such as high reward variance and long confirmation times. LaKSA can support large numbers of nodes by design, and provides probabilistic safety guarantees in which a client makes commit decisions by calculating the probability that a transaction is reverted based on its blockchain view. We present a thorough analysis of LaKSA and report on its implementation and evaluation. Furthermore, our new technique of proving safety can be applied more broadly to other Proof-of-Stake protocols.

View More Papers

Empirical Scanning Analysis of Censys and Shodan

Christopher Bennett, AbdelRahman Abdou, and Paul C. van Oorschot (School of Computer Science, Carleton University, Canada)

Read More

Forward and Backward Private Conjunctive Searchable Symmetric Encryption

Sikhar Patranabis (ETH Zurich), Debdeep Mukhopadhyay (IIT Kharagpur)

Read More

Improving Signal's Sealed Sender

Ian Martiny (University of Colorado Boulder), Gabriel Kaptchuk (Boston University), Adam Aviv (The George Washington University), Dan Roche (U.S. Naval Avademy), Eric Wustrow (University of Colorado Boulder)

Read More

Bitcontracts: Supporting Smart Contracts in Legacy Blockchains

Karl Wüst (ETH Zurich), Loris Diana (ETH Zurich), Kari Kostiainen (ETH Zurich), Ghassan Karame (NEC Labs), Sinisa Matetic (ETH Zurich), Srdjan Capkun (ETH Zurich)

Read More