Shangqi Lai (Monash University), Xingliang Yuan (Monash University), Joseph K. Liu (Monash University), Xun Yi (RMIT University), Qi Li (Tsinghua University), Dongxi Liu (Data61, CSIRO), Surya Nepal (Data61, CSIRO)

Network function virtualisation enables versatile network functions as cloud services with reduced cost. Specifically, network measurement tasks such as heavy-hitter detection and flow distribution estimation serve many core network functions for improved performance and security of enterprise networks. However, deploying network measurement services in third-party multi-tenant cloud service providers raises critical privacy and security concerns. Recent studies demonstrate that leaking and abusing flow statistics can lead to severe network attacks such as DDoS, network topology manipulation and poisoning, etc.

In this paper, we propose OblivSketch, an oblivious network measurement service using Intel SGX. It employs hardware enclave for secure network statistics generation and queries. The statistics are maintained in newly designed oblivious data structures inside the SGX enclave and queried by data-oblivious algorithms to prevent data leakage caused by access patterns to the memory of SGX. To demonstrate the practicality, we implement OblivSketch as a full-fledge service integrated with the off-the-shelf SDN framework. The evaluations demonstrate that OblivSketch consumes a constant and small memory space (6MB) to track a massive amount of flows (from 30k to 1.45m), and it takes no more than 15ms to respond six widely adopted measurement queries for a 5s-trace with 70k flows.

View More Papers

SODA: A Generic Online Detection Framework for Smart Contracts

Ting Chen (University of Electronic Science and Technology of China), Rong Cao (University of Electronic Science and Technology of China), Ting Li (University of Electronic Science and Technology of China), Xiapu Luo (The Hong Kong Polytechnic University), Guofei Gu (Texas A&M University), Yufei Zhang (University of Electronic Science and Technology of China), Zhou Liao (University…

Read More

FARE: Enabling Fine-grained Attack Categorization under Low-quality Labeled Data

Junjie Liang (The Pennsylvania State University), Wenbo Guo (The Pennsylvania State University), Tongbo Luo (Robinhood), Vasant Honavar (The Pennsylvania State University), Gang Wang (University of Illinois at Urbana-Champaign), Xinyu Xing (The Pennsylvania State University)

Read More

To Err.Is Human: Characterizing the Threat of Unintended URLs...

Beliz Kaleli (Boston University), Brian Kondracki (Stony Brook University), Manuel Egele (Boston University), Nick Nikiforakis (Stony Brook University), Gianluca Stringhini (Boston University)

Read More