Shangqi Lai (Monash University), Xingliang Yuan (Monash University), Joseph K. Liu (Monash University), Xun Yi (RMIT University), Qi Li (Tsinghua University), Dongxi Liu (Data61, CSIRO), Surya Nepal (Data61, CSIRO)

Network function virtualisation enables versatile network functions as cloud services with reduced cost. Specifically, network measurement tasks such as heavy-hitter detection and flow distribution estimation serve many core network functions for improved performance and security of enterprise networks. However, deploying network measurement services in third-party multi-tenant cloud service providers raises critical privacy and security concerns. Recent studies demonstrate that leaking and abusing flow statistics can lead to severe network attacks such as DDoS, network topology manipulation and poisoning, etc.

In this paper, we propose OblivSketch, an oblivious network measurement service using Intel SGX. It employs hardware enclave for secure network statistics generation and queries. The statistics are maintained in newly designed oblivious data structures inside the SGX enclave and queried by data-oblivious algorithms to prevent data leakage caused by access patterns to the memory of SGX. To demonstrate the practicality, we implement OblivSketch as a full-fledge service integrated with the off-the-shelf SDN framework. The evaluations demonstrate that OblivSketch consumes a constant and small memory space (6MB) to track a massive amount of flows (from 30k to 1.45m), and it takes no more than 15ms to respond six widely adopted measurement queries for a 5s-trace with 70k flows.

View More Papers

WATSON: Abstracting Behaviors from Audit Logs via Aggregation of...

Jun Zeng (National University of Singapore), Zheng Leong Chua (Independent Researcher), Yinfang Chen (National University of Singapore), Kaihang Ji (National University of Singapore), Zhenkai Liang (National University of Singapore), Jian Mao (Beihang University)

Read More

SODA: A Generic Online Detection Framework for Smart Contracts

Ting Chen (University of Electronic Science and Technology of China), Rong Cao (University of Electronic Science and Technology of China), Ting Li (University of Electronic Science and Technology of China), Xiapu Luo (The Hong Kong Polytechnic University), Guofei Gu (Texas A&M University), Yufei Zhang (University of Electronic Science and Technology of China), Zhou Liao (University…

Read More

KUBO: Precise and Scalable Detection of User-triggerable Undefined Behavior...

Changming Liu (Northeastern University), Yaohui Chen (Facebook Inc.), Long Lu (Northeastern University)

Read More

Debunking Exposure Notification

Serge Vaudenay, EPFL, Switzerland

Read More