Jinho Jung (Georgia Institute of Technology), Stephen Tong (Georgia Institute of Technology), Hong Hu (Pennsylvania State University), Jungwon Lim (Georgia Institute of Technology), Yonghwi Jin (Georgia Institute of Technology), Taesoo Kim (Georgia Institute of Technology)

Fuzzing is an emerging technique to automatically validate programs and uncover bugs. It has been widely used to test many programs and has found thousands of security vulnerabilities. However, existing fuzzing efforts are mainly centered around Unix-like systems, as Windows imposes unique challenges for fuzzing: a closed-source ecosystem, the heavy use of graphical interfaces and the lack of fast process cloning machinery.

In this paper, we propose two solutions to address the challenges Windows fuzzing faces. Our system, WINNIE, first tries to synthesize a harness for the application, a simple program that directly invokes target functions, based on sample executions. It then tests the harness, instead of the original complicated program, using an efficient implementation of fork on Windows. Using these techniques, WINNIE can bypass irrelevant GUI code to test logic deep within the application. We used WINNIE to fuzz 59 closed-source Windows binaries, and it successfully generated valid fuzzing harnesses for all of them. In our evaluation, WINNIE can support 2.2x more programs than existing Windows fuzzers could, and identified 3.9x more program states and achieved 26.6x faster execution. In total, WINNIE found 61 unique bugs in 32 Windows binaries.

View More Papers

Favocado: Fuzzing the Binding Code of JavaScript Engines Using...

Sung Ta Dinh (Arizona State University), Haehyun Cho (Arizona State University), Kyle Martin (North Carolina State University), Adam Oest (PayPal, Inc.), Kyle Zeng (Arizona State University), Alexandros Kapravelos (North Carolina State University), Gail-Joon Ahn (Arizona State University and Samsung Research), Tiffany Bao (Arizona State University), Ruoyu Wang (Arizona State University), Adam Doupe (Arizona State University),…

Read More

PrivacyFlash Pro: Automating Privacy Policy Generation for Mobile Apps

Sebastian Zimmeck (Wesleyan University), Rafael Goldstein (Wesleyan University), David Baraka (Wesleyan University)

Read More

CHANCEL: Efficient Multi-client Isolation Under Adversarial Programs

Adil Ahmad (Purdue University), Juhee Kim (Seoul National University), Jaebaek Seo (Google), Insik Shin (KAIST), Pedro Fonseca (Purdue University), Byoungyoung Lee (Seoul National University)

Read More

Shadow Attacks: Hiding and Replacing Content in Signed PDFs

Christian Mainka (Ruhr University Bochum), Vladislav Mladenov (Ruhr University Bochum), Simon Rohlmann (Ruhr University Bochum)

Read More