Haonan Feng (Beijing University of Posts and Telecommunications), Hui Li (Beijing University of Posts and Telecommunications), Xuesong Pan (Beijing University of Posts and Telecommunications), Ziming Zhao (University at Buffalo)

The FIDO protocol suite aims at allowing users to log in to remote services with a local and trusted authenticator. With FIDO, relying services do not need to store user-chosen secrets or their hashes, which eliminates a major attack surface for e-business. Given its increasing popularity, it is imperative to formally analyze whether the security promises of FIDO hold. In this paper, we present a comprehensive and formal verification of the FIDO UAF protocol by formalizing its security assumptions and goals and modeling the protocol under different scenarios in ProVerif. Our analysis identifies the minimal security assumptions required for each of the security goals of FIDO UAF to hold. We confirm previously manually discovered vulnerabilities in an automated way and disclose several new attacks. Guided by the formal verification results we also discovered 2 practical attacks on 2 popular Android FIDO apps, which we responsibly disclosed to the vendors. In addition, we offer several concrete recommendations to fix the identified problems and weaknesses in the protocol.

View More Papers

(Short) Fooling Perception via Location: A Case of Region-of-Interest...

Kanglan Tang, Junjie Shen, and Qi Alfred Chen (UC Irvine)

Read More

OblivSketch: Oblivious Network Measurement as a Cloud Service

Shangqi Lai (Monash University), Xingliang Yuan (Monash University), Joseph K. Liu (Monash University), Xun Yi (RMIT University), Qi Li (Tsinghua University), Dongxi Liu (Data61, CSIRO), Surya Nepal (Data61, CSIRO)

Read More

Does Every Second Count? Time-based Evolution of Malware Behavior...

Alexander Küchler (Fraunhofer AISEC), Alessandro Mantovani (EURECOM), Yufei Han (NortonLifeLock Research Group), Leyla Bilge (NortonLifeLock Research Group), Davide Balzarotti (EURECOM)

Read More

Reinforcement Learning-based Hierarchical Seed Scheduling for Greybox Fuzzing

Jinghan Wang (University of California, Riverside), Chengyu Song (University of California, Riverside), Heng Yin (University of California, Riverside)

Read More