Jun Zeng (National University of Singapore), Zheng Leong Chua (Independent Researcher), Yinfang Chen (National University of Singapore), Kaihang Ji (National University of Singapore), Zhenkai Liang (National University of Singapore), Jian Mao (Beihang University)

Endpoint monitoring solutions are widely deployed in today’s enterprise environments to support advanced attack detection and investigation. These monitors continuously record system-level activities as audit logs and provide deep visibility into security incidents. Unfortunately, to recognize behaviors of interest and detect potential threats, cyber analysts face a semantic gap between low-level audit events and high-level system behaviors. To bridge this gap, existing work largely matches streams of audit logs against a knowledge base of rules that describe behaviors. However, specifying such rules heavily relies on expert knowledge. In this paper, we present Watson, an automated approach to abstracting behaviors by inferring and aggregating the semantics of audit events. Watson uncovers the semantics of events through their usage context in audit logs. By extracting behaviors as connected system operations, Watson then combines event semantics as the representation of behaviors. To reduce analysis workload, Watson further clusters semantically similar behaviors and distinguishes the representatives for analyst investigation. In our evaluation against both benign and malicious behaviors, Watson exhibits high accuracy for behavior abstraction. Moreover, Watson can reduce analysis workload by two orders of magnitude for attack investigation.

View More Papers

From Library Portability to Para-rehosting: Natively Executing Microcontroller Software...

Wenqiang Li (State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences; Department of Computer Science, the University of Georgia, USA; School of Cyber Security, University of Chinese Academy of Sciences; Department of Electrical Engineering and Computer Science, the University of Kansas, USA), Le Guan (Department of Computer Science, the University…

Read More

PFirewall: Semantics-Aware Customizable Data Flow Control for Smart Home...

Haotian Chi (Temple University), Qiang Zeng (University of South Carolina), Xiaojiang Du (Temple University), Lannan Luo (University of South Carolina)

Read More

Location Data and COVID-19 Contact Tracing: How Data Privacy...

Callie Monroe, Faiza Tazi, Sanchari Das (university of Denver)

Read More

LaKSA: A Probabilistic Proof-of-Stake Protocol

Daniel Reijsbergen (Singapore University of Technology and Design), Pawel Szalachowski (Singapore University of Technology and Design), Junming Ke (University of Tartu), Zengpeng Li (Singapore University of Technology and Design), Jianying Zhou (Singapore University of Technology and Design)

Read More