Guoming Zhang (Zhejiang University), Xiaoyu Ji (Zhejiang University), Xinfeng Li (Zhejiang University), Gang Qu (University of Maryland), Wenyuan Xu (Zhejing University)

DolphinAttacks (i.e., inaudible voice commands) modulate audible voices over ultrasounds to inject malicious commands silently into voice assistants and manipulate controlled systems (e.g., doors or smart speakers). Eliminating DolphinAttacks is challenging if ever possible since it requires to modify the microphone hardware. In this paper, we design EarArray, a lightweight method that can not only detect such attacks but also identify the direction of attackers without requiring any extra hardware or hardware modification. Essentially, inaudible voice commands are modulated on ultrasounds that inherently attenuate faster than the one of audible sounds. By inspecting the command sound signals via the built-in multiple microphones on smart devices, EarArray is able to estimate the attenuation rate and thus detect the attacks. We propose a model of the propagation of audible sounds and ultrasounds from the sound source to a voice assistant, e.g., a smart speaker, and illustrate the underlying principle and its feasibility. We implemented EarArray using two specially-designed microphone arrays and our experiments show that EarArray can detect inaudible voice commands with an accuracy of 99% and recognize the direction of the attackers with an accuracy of 97.89%.

View More Papers

(Short) Spoofing Mobileye 630’s Video Camera Using a Projector

Ben Nassi, Dudi Nassi, Raz Ben Netanel and Yuval Elovici (Ben-Gurion University of the Negev)

Read More

Dinosaur Resurrection: PowerPC Binary Patching for Base Station Analysis

Uwe Muller, Eicke Hauck, Timm Welz, Jiska Classen, Matthias Hollick (Secure Mobile Networking Lab, TU Darmstadt)

Read More

Trust the Crowd: Wireless Witnessing to Detect Attacks on...

Kai Jansen (Ruhr University Bochum), Liang Niu (New York University), Nian Xue (New York University), Ivan Martinovic (University of Oxford), Christina Pöpper (New York University Abu Dhabi)

Read More

RandRunner: Distributed Randomness from Trapdoor VDFs with Strong Uniqueness

Philipp Schindler (SBA Research), Aljosha Judmayer (SBA Research), Markus Hittmeir (SBA Research), Nicholas Stifter (SBA Research, TU Wien), Edgar Weippl (Universität Wien)

Read More