Hyunjae Kang, Byung Il Kwak, Young Hun Lee, Haneol Lee, Hwejae Lee, and Huy Kang Kim (Korea University)

Cybersecurity competitions can promote the importance of security and discover talented researchers. We hosted the Car Hacking: Attack & Defense Challenge from September 14, 2020 to November 27, 2020, and many security companies and researchers participated. To the best of our knowledge, it is the first competition to contest both attack and detection techniques on an in-vehicle network, specifically Controller Area Network (CAN). The participants developed various injection attacks and high-performance detection algorithms based on the real vehicle environment. Rule-based and ensemble tree-based models dominated the final round. Also, time interval and data byte patterns worked as major features to detect attacks.

View More Papers

Demo: A Simulator for Cooperative and Automated Driving Security

Mohammed Lamine Bouchouia (Telecom Paris - Institut Polytechnique de Paris), Jean-Philippe Monteuuis (Qualcomm), Houda Labiod (Telecom Paris - Institut Polytechnique de Paris), Ons Jelassi, Wafa Ben Jaballah (Thales) and Jonathan Petit (Telecom Paris - Institut Polytechnique de Paris)

Read More

DRIVETRUTH: Automated Autonomous Driving Dataset Generation for Security Applications

Raymond Muller (Purdue University), Yanmao Man (University of Arizona), Z. Berkay Celik (Purdue University), Ming Li (University of Arizona) and Ryan Gerdes (Virginia Tech)

Read More

MUVIDS: False MAVLink Injection Attack Detection in Communication for...

Seonghoon Jeong, Eunji Park, Kang Uk Seo, Jeong Do Yoo, and Huy Kang Kim (Korea University)

Read More

Model-Agnostic Defense for Lane Detection against Adversarial Attack

Henry Xu, An Ju, and David Wagner (UC Berkeley) Baidu Security Auto-Driving Security Award Winner ($1000 cash prize)!

Read More